Abstract:
An overrunning clutch is provided with increased torque transmitting capacity by utilizing a relatively large diameter spring wire whose end turns have their radial peripheries ground down to weaken the end turns proximate to the free end of the spring. Preferably the end turns proximate to the free end of the coil spring are tapered radially inwardly to lift the spring coil turns remote from the free end off the shaft of the overrunning clutch. The end of the coil spring fixed to the bushing may be formed as a hook having a portion extending radially through a slot within the bushing and an integral bent back circumferential portion nested in an annular groove within the outer periphery of the bushing intersecting the radial slot. A double helical coil spring having parallel, adjacent turns within separate helical grooves within the inner periphery of the bushing has a loop connecting the turns opposite their free ends mounted within a transverse channel connecting the pair of helical grooves.
Abstract:
An overrunning clutch is provided with increased torque transmitting capacity by utilizing a relatively large diameter spring wire whose end turns have their radial peripheries ground down to weaken the end turns proximate to the free end of the spring. Preferably the end turns proximate to the free end of the coil spring are tapered radially inwardly to lift the spring coil turns remote from the free end off the shaft of the overrunning clutch. The end of the coil spring fixed to the bushing may be formed as a hook having a portion extending radially through a slot within the bushing and an integral bent back circumferential portion nested in a annular groove within the outer periphery of the bushing intersecting the radial slot. A double helical coil spring having parallel, adjacent turns within separate helical grooves within the inner periphery of the bushing has a loop connecting the turns opposite their free ends mounted within a transverse channel connecting the pair of helical grooves.