Abstract:
A spring type one-way clutch includes an outer ring rotatable about a rotary shaft and having an inner tubular portion, and a clutch spring mounted in the outer ring. The clutch spring includes a large-diameter coil spring portion, a transition portion connected to the winding end of the large-diameter coil spring portion, and a small-diameter coil spring portion connected to the radially inner end of the transition portion and wound in the opposite direction from the large-diameter coil spring portion. When the outer ring is rotated in the direction opposite the winding direction of the large-diameter coil spring portion, the large- and small-diameter coil spring portions are radially compressed and pressed against the inner tubular portion and the rotary shaft, allowing the rotary shaft to rotate together with the outer ring. The transition portion spirals radially inwardly in the winding direction of the large-diameter coil spring portion.
Abstract:
A spring type one-way clutch includes an outer ring rotatable about a rotary shaft and having an inner tubular portion, and a clutch spring mounted in the outer ring. The clutch spring includes a large-diameter coil spring portion, a transition portion connected to the winding end of the large-diameter coil spring portion, and a small-diameter coil spring portion connected to the radially inner end of the transition portion and wound in the opposite direction from the large-diameter coil spring portion. When the outer ring is rotated in the direction opposite the winding direction of the large-diameter coil spring portion, the large- and small-diameter coil spring portions are radially compressed and pressed against the inner tubular portion and the rotary shaft, allowing the rotary shaft to rotate together with the outer ring. The transition portion spirals radially inwardly in the winding direction of the large-diameter coil spring portion.
Abstract:
Transmission drive unit (10), in particular for adjusting movable parts in the motor vehicle, having a drive motor (12) and a transmission (14) which is driven thereby, wherein the transmission (14) has an output element (70) and a self-locking device (60) with a locking element (63, 55), and the locking element locks the transmission (12) with respect to torques which are applied to the transmission (12) by the output element (70), wherein the transmission (12) with its transmission toothing (47) and a motor shaft bearing (32, 28) is designed to have optimized efficiency and minimal friction, and the drive motor (12) has, as an exciter magnet, a sleeve-shaped annular magnet (18) which is arranged in a pole pot (16) which forms a magnetic return.
Abstract:
A high-load linear actuator includes a driving mechanism, a worm shaft, a worm wheel assembly, a lead screw, a telescopic pipe and an outer pipe. The driving mechanism includes a base and a motor. The base has a supporting portion and an accommodating portion. The motor is fixed to the supporting portion. The worm shaft extends from the motor into the supporting portion. The worm wheel assembly includes a worm wheel and two bearings for supporting the worm wheel in the accommodating portion. The worm wheel is drivingly engaged with the worm shaft. The lead screw is disposed through the worm wheel and driven by the motor for rotation. The telescopic pipe slips on the lead screw to be threadedly connected therewith. The outer pipe slips on the telescopic pipe. The rotation of the lead screw drives the telescopic pipe to linearly extend or retract relative to the outer pipe.
Abstract:
A spring type one-way clutch includes an outer ring rotatable about a rotary shaft and having an inner tubular portion, and a clutch spring mounted in the outer ring. The clutch spring includes a large-diameter coil spring portion, a transition portion connected to the winding end of the large-diameter coil spring portion, and a small-diameter coil spring portion connected to the radially inner end of the transition portion and wound in the opposite direction from the large-diameter coil spring portion. When the outer ring is rotated in the direction opposite the winding direction of the large-diameter coil spring portion, the large and small-diameter coil spring portions are radially compressed and pressed against the inner tubular portion and the rotary shaft, allowing the rotary shaft to rotate together with the outer ring. The transition portion spirals radially inwardly in the winding direction of the large-diameter coil spring portion.
Abstract:
The invention relates to a motor-driven device for actuating a movable panel (1) of a motor vehicle, including: a drive unit (3); a transmission element (5) which is to be set into motion by the motor unit (3); a braking module (7) for the transmission element (5), characterized in that the braking module (7) is connected to the transmission element (5) by a clutch module (9) positioned between the transmission element (5) and the drive unit (3), and comprising a wound spring (35) in friction contact with a brake shaft (23) connected to the braking module (7), as well as two coupling elements (25, 27) that are mutually engaged with a functional clearance therebetween, the relative change in position of said two coupling elements (25, 27) enabling the ends (37, 38) of said wound spring (35) to be controlled so as to switch the ends between an engaged position and a disengaged position of the braking module (7), wherein the two coupling elements (25, 27) are a drive element and a driven element, respectively.
Abstract:
The invention relates to a load torque lock (100) having a brake element (40) in particular designed as a torsional spring and frictionally interacting with a brake body (36) for locking a torque, and having a drive wheel preferably rotatably supported on an axle (17) and coupled to at least one pusher (20) interacting with the drive wheel (18) for transmitting a torque from a drive motor (12), wherein the pusher (20) comprises at least one contact region (32) to the brake element (40) by means of which a torque to be locked can be introduced into the braking body (36) by means of the brake element (40). According to the invention, the pusher (20) is made of a first pusher element (24) and a second pusher element (30) designed as a separate component, such that the first or second pusher element (24, 30) comprises at least one pusher dog (26) engaging in a penetration (27) in the drive wheel (18), such that both pusher elements (24, 30) are disposed on different sides of the drive wheel (18), with the exception of the at least one pusher dog (26).
Abstract:
A decoupler assembly with a torsional damping system and a torque limiter. The torsional damping system has a torsion spring that facilitates transfer of rotary power into a hub. The torque limiter is wrapped about the torsion spring and radially expands with the torsion spring as a magnitude of the rotary power transmitted through the torsion spring increases. Contact between the torque limiter and another structure in the decoupler assembly halts radial expansion of the torsion spring.
Abstract:
In a force transmission system with a wrapping spring-type wraparound element and with a frictional surface assigned to the wraparound element, a switching device is provided for switching the wraparound element between two switching states is provided. In the first switching state, the wraparound element is operatively connected in a force-transmitting manner to the frictional surface. In the second switching state, it is operatively connected thereto in a non-force-transmitting manner. In the second switching state, the wraparound element is fully lifted off the frictional surface. The force transmission system is suitable in particular for a drive system of an adjusting element of a motor vehicle.
Abstract:
An anti-pinch system of a vehicle closure includes a detection system for detecting pinching and a clutch to disconnect the vehicle closure from a closure driving mechanism following detection of pinching by the detection system. The closure drive mechanism can be disengaged to prevent an increase in pinching during the time required to reverse the movement of the closure driving mechanism.