Abstract:
A display device substrate includes a transparent substrate arranged in parallel with a face on which an image is displayed and a light-shielding film partially formed on the transparent substrate for shielding light. The light-shielding film has, at a portion of the transparent substrate along an edge thereof on at least one side, a low light-shielding portion having a lower light-shielding capability. The low light-shielding portion is formed with a smaller thickness than that of the other portion in the light-shielding film. With this configuration, even when, in a gang printing display panel in which a plurality of display panels each having the display device substrate are arranged, the light-shielding films of the display panels adjacent to each other are formed continuously, cutting can be performed more easily at a position to be cut.
Abstract:
A display device includes a first substrate which is light transmissive and has a display region and a periphery region surrounding the display region. A light shielding portion is formed in at least the periphery region of the first substrate and has a light passing portion in the periphery region. A first scale mark portion is formed on the first substrate so as to be arranged inside the light passing portion. A second substrate overlaps the first substrate and a second scale mark portion is formed on the second substrate and forms a pair with the first scale mark portion. A sealing member seals the first and second substrates in the periphery region between the display region and the light passing portion. A dam portion is formed on the first substrate between the display region and the light passing portion.
Abstract:
The drain lines are such that one drain line is formed for every two pixels adjacent to each other within the same pixel row, the gate lines are formed of a first gate line connected to one of the two pixels connected to the same drain line within the same pixel row and a second gate line connected to the other pixel, the pixel electrode is formed of a first linear electrode inclined in a plus direction from the first direction, and a second linear electrode inclined in a minus direction from the first direction, in a region in which the pixel electrode is superimposed over the common electrode, and each pixel has the first and second gate lines and thin film transistor formed in a region between the region of the first linear electrode and the region of the second linear electrode.