摘要:
The present invention provides an Al—Zn—Mg—Cu casting alloy that provides high strength for automotive and aerospace applications and optimized stress corrosion cracking resistance in highly corrosive and tensile environments. The inventive alloy composition includes about 3.5 wt. % to about 5.5 wt. % Zn; about 1.0 wt. % to about 3.0 wt. % Mg; about 0.5 wt. % to about 1.2 wt. % Cu; less than about 1.0 wt. % Si; less than about 0.30 wt. % Mn; less than about 0.30 wt. % Fe; and a balance of Al and incidental impurities.
摘要:
The present invention provides an Al—Zn—Mg—Cu casting alloy that provides high strength for automotive and aerospace applications and optimized stress corrosion cracking resistance in highly corrosive and tensile environments. The inventive alloy composition includes about 3.5 wt. % to about 5.5 wt. % Zn; about 1.0 wt. % to about 3.0 wt. % Mg; about 0.5 wt. % to about 1.2 wt. % Cu; less than about 1.0 wt. % Si; less than about 0.30 wt. % Mn; less than about 0.30 wt. % Fe; and a balance of Al and incidental impurities.
摘要:
An apparatus for transferring molten metal from a melting furnace to a casting furnace is provided. A sensing and control system for the transfer of molten metal from a transfer furnace to a casting furnace is also described. The combination of the transfer apparatus with the sensing and control system provides for the introduction of reduced oxide molten metal into a casting furnace.
摘要:
An apparatus for transferring molten metal from a melting furnace to a casting furnace is provided. A sensing and control system for the transfer of molten metal from a transfer furnace to a casting furnace is also described. The combination of the transfer apparatus with the sensing and control system provides for the introduction of reduced oxide molten metal into a casting furnace.