Abstract:
An injection molding device includes: a lower die that supports a rotor core; an intermediate die including a magnetizing mechanism; and an upper die including an injection die having a gate formed therein through which a molten bonded-magnet material supplied from a supply source is injected into a magnet insertion hole in the rotor core. The injection die has a cylindrical protruding portion at an end surface of which the gate is open. In the protruding portion, a magnetic-flux applying member containing ferromagnetic material is embedded with its side surface exposed at an outer peripheral surface of the protruding portion. The magnetizing mechanism is formed in an annular shape that can accommodate, inside its inner periphery, the rotor core and a distal end portion of the protruding portion by disposing yokes and permanent magnets alternately in the circumferential direction. Magnetic-path surfaces of the yokes radially face the side surface.
Abstract:
An orientation magnetization device includes plural orientation magnetization yokes and plural orientation magnetization magnets, and molds field magnets while a rotor core is disposed in a magnetic circuit that is formed by assembling the orientation magnetization yokes and the orientation magnetization magnets into an annular shape. When the rotor core is disposed in the magnetic circuit, protruding portions are disposed at portions of the respective orientation magnetization yokes facing the rotor core. Auxiliary magnets are disposed in gaps between the respective orientation magnetization magnets and the rotor core, on opposite sides of each protruding portion in a circumferential direction of the orientation magnetization device. Each protruding portion and each auxiliary magnet extend in an axial direction of the orientation magnetization device, and are skewed with respect to the axial direction of the orientation magnetization device.
Abstract:
An interior permanent magnet rotor includes a cylindrical rotor core having an axial hole extending in an axial direction, and a resin magnet that is formed to fill the axial hole by injection molding and that has a pair of axial end faces. The resin magnet includes a linear portion that has a linear shape in section perpendicular to the axial direction of the rotor core. The linear portion has a first end and a second end located closer to an outer periphery of the rotor core than the first end is. A gate mark is located on the second end of the linear portion on at least one of the axial end faces of the resin magnet.