摘要:
For ray tracing scenes composed of primitives, systems and methods-accelerate ray/primitive intersection identification by testing rays against elements of geometry acceleration data (GAD) in a parallelized intersection testing resource. Groups of rays can be described as shared attribute information and individual ray data for ray data transfer. A host hosts shading and/or management processes can control the testing resource and adapting the ray tracing. The GAD elements can be arranged in a graph, and rays collected into collections based on whether a ray intersects a given element. When a collection is deemed ready for further testing, it is tested for intersection with GAD elements connected, in the graph, to the given element. The graph can be hierarchical such that rays of a given collection are tested against children of the GAD element associated with the given collection.
摘要:
For ray tracing systems, described methods, media, apparatuses provide for accounting of light energy that will be collected at pixels of a 2-D representation without recursive closure of a tree of ray/primitive intersections, and also provide for adaptivity in ray tracing based on importance indicators of each ray, such as a weight, which may be carried in data structures representative of the rays. Examples of such adaptivity may include determining a number of children to issue for shading an identified intersecting primitive, culling rays, and adding rays to achieve more accurate sampling, if desired. All such adaptivity may be triggered with goal-based indicators, such as a threshold value representative of rendering progress to a time-based goal, such as a frame rate.
摘要:
Aspects comprise systems implementing 3-D graphics processing functionality in a multiprocessing system. Control flow structures are used in scheduling instances of computation in the multiprocessing system, where different points in the control flow structure serve as points where deferral of some instances of computation can be performed in favor of scheduling other instances of computation. In some examples, the control flow structure identifies particular tasks, such as intersection testing of a particular portion of an acceleration structure, and a particular element of shading code. In some examples, the aspects are used in 3-D graphics processing systems that can perform ray tracing based rendering.
摘要:
Ray tracing, and more generally, graphics operations taking place in a 3-D scene, involve a plurality of constituent graphics operations. Scheduling of graphics operations for concurrent execution on a computer may increase throughput. In aspects herein, constituent graphics operations are scheduled in groups, having members selected according to disclosed aspects. Processing for specific graphics operations in a group can be deferred if all the operations in the group cannot be further tested concurrently. Graphics operations that have been deferred are recombined into two or more different groups and ultimately complete processing, through a required number of iterations of such process. In one application, the performance of the graphics operations perform a search in which respective 1:1 matches between different types of geometric shapes involved in the 3-D scene are identified. For example, closest intersections between rays and scene geometry can be identified by processing scheduled according to disclosed aspects.
摘要:
Systems, methods, and computer readable media embodying such methods provide for allowing specification of per-ray clipping information that defines a sub-portion of a 3-D scene in which the ray should be traced. The clipping information can be specified as a clip distance from a ray origin, as an end value of a parametric ray definition, or alternatively the clipping information can be built into a definition of the ray to be traced. The clipping information can be used to check whether portions of an acceleration structure need to be traversed, as well as whether primitives should be tested for intersection. Other aspects include specifying a default object that can be returned as intersected when no primitive was intersected within the sub-portion defined for testing. Further aspects include allowing provision of flags interpretable by an intersection testing resource that control what the intersection testing resource does, and/or what information it reports after conclusion of testing of a ray.
摘要:
Aspects comprise systems implementing 3-D graphics processing functionality in a multiprocessing system. Control flow structures are used in scheduling instances of computation in the multiprocessing system, where different points in the control flow structure serve as points where deferral of some instances of computation can be performed in favor of scheduling other instances of computation. In some examples, the control flow structure identifies particular tasks, such as intersection testing of a particular portion of an acceleration structure, and a particular element of shading code. In some examples, the aspects are used in 3-D graphics processing systems that can perform ray tracing based rendering.
摘要:
For ray tracing systems, described methods, media, apparatuses provide for accounting of light energy that will be collected at pixels of a 2-D representation without recursive closure of a tree of ray/primitive intersections, and also provide for adaptivity in ray tracing based on importance indicators of each ray, such as a weight, which may be carried in data structures representative of the rays. Examples of such adaptivity may include determining a number of children to issue for shading an identified intersecting primitive, culling rays, and adding rays to achieve more accurate sampling, if desired. All such adaptivity may be triggered with goal-based indicators, such as a threshold value representative of rendering progress to a time-based goal, such as a frame rate.
摘要:
Aspects include API interfaces for interfacing shaders with other components and/or code modules that provide ray tracing functionality. For example, API calls may allow direct contribution of light energy to a buffer for an identified pixel, and allow emission of new rays for intersection testing alone or in bundles. The API also can provide a mechanism for associating arbitrary data with ray definition data defining a ray to be tested through a shader using the emit ray call. The arbitrary data is provided to a shader associated with an object that is identified subsequently as having been intersected by the ray. The data can include code, or a pointer to code, that can be used by or run after the shader. The data also can be propagated through a series of shaders, and associated with rays instantiated in each shader. Recursive shaders can be recompiled as non-recursive shaders interfacing with API semantics according to the description.
摘要:
For ray tracing scenes composed of primitives, systems and methods can traverse rays through an acceleration structure. The traversal can be implemented by concurrently testing a plurality of nodes of the acceleration structure for intersection with a sequence of one or more rays. Such testing can occur in a plurality of test cells. Leaf nodes of the acceleration structure can bound primitives, and a sequence primitives can be tested concurrently for intersection in the test cells against a plurality of rays that have intersected a given leaf node. Intersection testing of a particular leaf node can be deferred until a sufficient quantity of rays have been collected for that node.
摘要:
Ray tracing, and more generally, graphics operations taking place in a 3-D scene, involve a plurality of constituent graphics operations. Scheduling of graphics operations for concurrent execution on a computer may increase throughput. In aspects herein, constituent graphics operations are scheduled in groups, having members selected according to disclosed aspects. Processing for specific graphics operations in a group can be deferred if all the operations in the group cannot be further tested concurrently. Graphics operations that have been deferred are recombined into two or more different groups and ultimately complete processing, through a required number of iterations of such process. In one application, the performance of the graphics operations perform a search in which respective 1:1 matches between different types of geometric shapes involved in the 3-D scene are identified. For example, closest intersections between rays and scene geometry can be identified by processing scheduled according to disclosed aspects.