摘要:
A method and apparatus are provided for generating short (e.g., picosecond) pulses using a 2 section 1553 nm DBR laser without gain switching nor external modulation. The center wavelength of the DBR section is modulated at 0.5 GHz to generate a constant amplitude frequency modulated optical wave Large group velocity dispersion is then applied with a chirped fiber Bragg grating to convert the FM signal to a pulse stream.
摘要:
A fiber laser for producing high energy ultrashort laser pulses, having a positive-dispersion fiber segment and a negative-dispersion fiber segment joined in series with the positive-dispersion fiber segment to form a laser cavity. With this configuration, soliton effects of laser pulse circulation in the cavity are suppressed and widths of laser pulses circulating in the cavity undergo large variations between a maximum laser pulse width and a minimum laser pulse width during one round trip through the cavity. The fiber laser also provides means for modelocking laser radiation in the laser cavity, means for providing laser radiation gain in the laser cavity, and means for extracting laser pulses from the laser cavity. Using selected positive- and negative-dispersion fiber segments, the laser cavity exhibits a net positive group velocity dispersion, and the ratio of the maximum laser pulse width to the minimum laser pulse width attained during one round trip through the cavity is greater than 5, and preferably greater than 10. The laser cavity may be configured as a linear cavity geometry, a ring cavity geometry, a figure eight geometry, or a Sagnac loop reflector geometry, among others. Preferably the ring cavity is configured to achieve unidirectional circulation of laser pulses in the ring cavity, and with this configuration, is shown to produce laser pulses having a pulse width of less than 100 fs and a pulse energy of at least 80 pJ.
摘要:
Systems and methods for enhancing the stability of a mode-locked laser's output are disclosed. The laser systems include a mode-locking element that mode-locks the laser's output, and a semiconductor element. The semiconductor element produces a loss at the laser's operative wavelength that increases as pulse energy increases, thereby enhancing the stability of the mode-locked output. The semiconductor elements can be used to enhance stability of both passively and actively mode-locked laser systems.
摘要:
Disclosed is a system including an integrated silicon-based structure including a microcavity configured to receive optical energy from an input beam carrying an optical signal and absorb the optical energy by a nonlinear multi-photon absorption process. For example, the multi-photon absorption process can be two-photon absorption (TPA). The integrated silicon-based structure further includes electrodes responsive to the nonlinear multi-photon absorption process in the microcavity for producing an electronic signal indicative of the optical signal. A related method is also disclosed.
摘要:
A system and a method for generating terahertz (THz) radiation are provided. The system includes a photonic crystal structure comprising at least one nonlinear material that enables optical rectification. The photonic crystal structure is configured to have the suitable transverse dispersion relations and enhanced density photonic states so as to allow THz radiation to be emitted efficiently when an optical or near infrared pulse travels through the nonlinear part of the photonic crystal.
摘要:
Femtosecond pulse trains in waveguide lasers with high fundamental repetition rates are achieved by exploiting the nonlinearity in the waveguide. Components of the apparatus include an optical resonator, a saturable absorber for starting and stabilizing mode-locking, and a gain element. Part of the laser cavity or the entire laser cavity is made of waveguide or fiber (collectively called “waveguide” herein). The net dispersion of the laser cavity can be anomalous. This anomalous dispersion in combination with the positive self-phase modulation nonlinearity in the waveguide creates soliton formation to shorten the pulse duration in the invented lasers. Conversely, a normal dispersive waveguide with negative self-phase modulation nonlinearity can also be used.
摘要:
Femtosecond pulse trains in waveguide lasers with high fundamental repetition rates are achieved by exploiting the nonlinearity in the waveguide. Components of the apparatus include an optical resonator, a saturable absorber for starting and stabilizing mode-locking, and a gain element. Part of the laser cavity or the entire laser cavity is made of waveguide or fiber (collectively called “waveguide” herein). The net dispersion of the laser cavity can be anomalous. This anomalous dispersion in combination with the positive self-phase modulation nonlinearity in the waveguide creates soliton formation to shorten the pulse duration in the invented lasers. Conversely, a normal dispersive waveguide with negative self-phase modulation nonlinearity can also be used.
摘要:
A PMD emulator includes at least two polarization phase plates. The rotation matrix of the at two phase plates are varied to reduce the required number of phase-plates without reducing the number of birefringent segments used.
摘要:
A mirror system for use in generating a short duration laser pulse is disclosed. The system includes first and second double-chirped mirrors disposed along an optical path within a cavity, where the second double-chirped mirror includes an additional phase-shifting layer as compared to the first double-chirped mirror. The additional phase-shifting layer causes the mirror system during use to produce a laser pulse that is characterized by oscillations in group delay substantially reduced in amplitude in comparison to oscillations in group delay for a pulse produced by the same system without the additional phase-shifting layer.
摘要:
Described is an all-optical switch that is significantly insensitive to polarization instabilities. The optical switch can be configured as an ultrafast logic gate, a switch for ultrafast communication systems or a key component of an all-optical regenerator. Performance is independent of the statistical characteristics of the data controlling the switch. The switch includes a birefringent optical channel in communication with one end of a nonlinear optical channel through a coupler and a polarization rotation mirror in communication with the other end of the nonlinear channel. An optical data pulse for controlling the switching function is provided to one port of the coupler.