DAMAGED SOFTWARE SYSTEM DETECTION
    1.
    发明申请
    DAMAGED SOFTWARE SYSTEM DETECTION 有权
    损坏的软件系统检测

    公开(公告)号:US20100174947A1

    公开(公告)日:2010-07-08

    申请号:US12350518

    申请日:2009-01-08

    IPC分类号: G06F11/30 G06F11/07

    摘要: A computer implemented method for a computer including a processor having a software stack accessed by multiple application programs includes receiving software requests from the multiple applications at the software stack; monitoring the rate of stack failures at the stack via a stack monitor; comparing the rate of stack failures with a time related threshold; and generating an alarm when the rate of stack failures exceeds the time related threshold.

    摘要翻译: 一种用于计算机的计算机实现的方法,包括具有由多个应用程序访问的软件栈的处理器,包括从软件堆栈的多个应用接收软件请求; 通过堆栈监视器监视堆栈堆栈故障的速率; 将堆栈故障率与时间相关阈值进行比较; 并且当堆栈故障率超过时间相关阈值时产生报警。

    Determining when to create a prediction based on deltas of metric values
    4.
    发明授权
    Determining when to create a prediction based on deltas of metric values 有权
    根据度量值的三角形确定何时创建预测

    公开(公告)号:US08838414B2

    公开(公告)日:2014-09-16

    申请号:US13087467

    申请日:2011-04-15

    IPC分类号: G06N5/04 G06N7/00

    CPC分类号: G06N7/005

    摘要: In an embodiment, deltas are calculated between respective current metric values for respective entities and previous metric values for the respective entities. A subset of the deltas is determined. A sum of the subset is calculated, and the sum is divided by a number of the subset to create an average delta for the subset. If one of the respective entities has one of the deltas that is greater than or equal to the average delta for the subset and the one of the respective entities was not previously used to create the previous prediction, then a current prediction is created.

    摘要翻译: 在一个实施例中,在相应实体的相应当前度量值和相应实体的先前度量值之间计算增量。 确定三角洲的一个子集。 计算子集的总和,并且将该和除以子集的数量以创建子集的平均增量。 如果相应实体中的一个具有大于或等于子集的平均增量的三角形之一,并且相应实体之一之前未被用于创建先前的预测,则创建当前预测。

    DETERMINING WHEN TO CREATE A PREDICTION BASED ON DELTAS OF METRIC VALUES
    5.
    发明申请
    DETERMINING WHEN TO CREATE A PREDICTION BASED ON DELTAS OF METRIC VALUES 有权
    根据公制价值计算创建预测时的确定

    公开(公告)号:US20120265723A1

    公开(公告)日:2012-10-18

    申请号:US13087467

    申请日:2011-04-15

    IPC分类号: G06N5/04

    CPC分类号: G06N7/005

    摘要: In an embodiment, deltas are calculated between respective current metric values for respective entities and previous metric values for the respective entities. A subset of the deltas is determined. A sum of the subset is calculated, and the sum is divided by a number of the subset to create an average delta for the subset. If one of the respective entities has one of the deltas that is greater than or equal to the average delta for the subset and the one of the respective entities was not previously used to create the previous prediction, then a current prediction is created.

    摘要翻译: 在一个实施例中,在相应实体的相应当前度量值和相应实体的先前度量值之间计算增量。 确定三角洲的一个子集。 计算子集的总和,并且将该和除以子集的数量以创建子集的平均增量。 如果相应实体中的一个具有大于或等于子集的平均增量的三角形之一,并且相应实体之一之前未被用于创建先前的预测,则创建当前预测。

    Determining a preferred node in a classification and regression tree for use in a predictive analysis
    7.
    发明授权
    Determining a preferred node in a classification and regression tree for use in a predictive analysis 失效
    确定用于预测分析的分类和回归树中的首选节点

    公开(公告)号:US08676739B2

    公开(公告)日:2014-03-18

    申请号:US12944353

    申请日:2010-11-11

    IPC分类号: G06F17/00

    CPC分类号: G06N5/02 G06K9/6282 G06N5/046

    摘要: Techniques are described for determining what node of a classification and regression tree (CART) should be used by a predictive analysis application. A first approach is to use a standard deviation of the data at a given the level of the CART to determine whether data in the next, lower node is more consistent than the data in the current node. A second approach is to measure a correlation between data points in a given node and the time at which each point was sampled (or other correlation metric) to identify a preferred node.

    摘要翻译: 描述了用于确定预测分析应用程序应该使用分类和回归树(CART)的哪个节点的技术。 第一种方法是在给定的CART级别使用数据的标准偏差,以确定下一个较低节点中的数据是否与当前节点中的数据更一致。 第二种方法是测量给定节点中的数据点与每个点被采样的时间(或其他相关度量)之间的相关性,以识别优选节点。