Abstract:
An existing projectile (21) is modified by adding a tail piece (22) to enable axial stacking of multiple projectiles (20) in a common barrel. Propellant for each modified projectile (20) is contained in respective chambers located external to the barrel and connected to the bore of the barrel through associated ports. Tail piece (22) aligns with a respective port and provides a space between consecutive projectiles (20) into which the propellant gas expands after ignition. Separate claims are directed to tail assembly (22), modified projectile (20), the barrel assembly having a plurality of projectiles (20) stacked in end-to-end relation, and to an external initiation system for the barrel assembly (see FIGS. 4, 7).
Abstract:
A barrel assembly for a weapon, said barrel assembly including a barrel; a plurality of projectile assemblies axially disposed in end to end abutting relationship within said barrel for operative sealing engagement with the bore of the barrel, each projectile including a projectile head and an integral cylindrical spacer portion extending axially and rearwardly from said projectile head; discrete propellant charges accommodated within said cylindrical spacer portion for propelling respective projectile assemblies sequentially through the muzzle of the barrel; ignition means for igniting said discrete propellant charges; and control means for selectively and sequentially actuating the ignition means. In one form, each projectile assembly further includes an internal wedging surface, at or adjacent the trailing end of said cylindrical extension which accommodates a tapered nose part of a following projectile, for expanding said trailing end into enhanced sealing engagement with the barrel upon engagement of said wedging surface with said tapered nose part.
Abstract:
A projectile having variable kinetic energy contains multiple propellant charges (14) that are able to be individually selected for ignition. Each charge (14) has a selectable initiator (15) that may be triggered by a wired or wireless firing system, preferably an inductive system, in order to determine the kinetic energy of the projectile. The projectiles are axially stacked for firing from the barrel of a weapon, with nose portion (11) shaped to seal against tail portion (12) of a leading projectile. Ignition gas exit ports (17) are located in nose portion (11) for propulsion of a leading projectile from the weapon. Alternative, the ports may be located in tail portion (12) for propulsion of each respective projectile. Charges (14) may be distributed around the longitudinal axis of body (10) of the projectile.
Abstract:
A power source (10) for providing energy to drive a mechanical device including a receiving chamber (11) and discrete propellant charges (23) for selective detonation whereby gases generated by the selective detonation expand into the receiving chamber (11) wherein said receiving chamber includes a reactive closure (15) which dynamically responds to pressure changes in the receiving chamber and wherein said power source further includes a linkage (16) associated with the reactive closure for transmitting energy from the dynamic response of the reactive closure to the mechanical device.
Abstract:
Projectiles with sealed propellant are described herein. In one embodiment of the invention, a projectile includes a body having a nose portion and a tail portion, a plurality of propellant charges contained within the body, a plurality of selectable initiators contained within the body for ignition of respective propellant charges, one or more ports for exit of ignition gases produced by the charges for propulsion of the projectile from the weapon, and one or more inductors for inducing a firing current, where at least one initiator only initiates on receiving a firing current which is different from the firing signal required to initiate the other initiators.
Abstract:
A set defence means for defending a designated area including, at least one monitor for monitoring the designated area to detect any zone therein in which a new presence appears, defence capable of debilitating personnel present anywhere in a remote designated area and communication means providing communication between the monitoring means and the defence means for triggering selective activation of the defence means for delivering a debilitating attack to the detected zone.
Abstract:
A vehicular weapons platform (30) including a plurality of barrel assemblies (10), wherein each barrel assembly includes a barrel (11), a plurality of projectiles (14) axially disposed within the barrel for operative sealing engagement with the bore of the barrel (11) and discrete propellant charges (15) for propelling respective projectiles sequentially through the muzzle of the barrel; and at least one of said plurality of barrel assemblies (10) includes a barrel which also forms a structural member of the weapons platform. In one preferred form, the weapons platform takes the form of a small combat aerial vehicle (SCAV) (30), wherein the barrel assemblies (10) form the airframe. A method of constructing a weapons platform from the barrel assemblies is also described.
Abstract:
A method of minimising misfiring or alleviating their consequences is provided by forming at least each trailing projectile (30) in a series of housed projectiles with a sealing portion (34) extending about a tapered anvil portion (31) and moveable therealong for expansion into sealing engagement with the barrel (11). The sealing portion (34) disengages forwardly in response to a misfire or the like to provide a bleed path for igniting the propellant charge (41) associated with the next leading projectile (30).
Abstract:
A projectile firing weapon for firing rounds of the type having a projectile and an associated bore seal which is radially expanded by relative axial displacement between the projectile and the bore seal. The weapon includes a barrel assembly having a barrel bore, a barrel chamber for the round to be fired through the barrel bore, and an associated breech chamber for the next round to be fired. A propellant chamber is formed in the barrel assembly between the barrel chamber and the breech chamber, and a feeder feeds propellant into the propellant chamber. Rounds may be fed axially and sequentially through a loading opening to the barrel assembly and into the breech chamber, thereby forcing the existing round therein into the barrel chamber. Holding means cooperable with the round fed into the breech chamber effect a sealing relationship between the breech chamber and the round therein, causing an operative closure of the barrel chamber. An igniter ignites propellant in the propellant chamber.
Abstract:
A barrel assembly includes a barrel and a plurality of projectile assemblies disposed in end to end abutting relationship within the barrel and forming a compression resistant column of projectile assemblies. Each projectile assembly includes a projectile head and a spacer assembly engaged therewith and extending axially therefrom to abu the adjacent projectile assembly. Complementary wedging surfaces are disposed on the spacer assembly and projectile head, respectively, wherein relative axial engagement between a projectile head and its spacer assembly causes a radial expansion of the projectile head of wedging the projectile head into sealing engagement with the barrels. A discrete propellant charge is associated with each projectile assembly for propelling the projectile assemblies sequentially through the muzzle of the barrels. Respective ignition means are disposed externally of the barrel for igniting the discrete propellant charges, and ignition apertures through the barrel are disposed at positions between adjacent projectile heads and provide communication between the externally disposed ignition means and the respective discrete propellant charges. A controller selectively and sequentially actuates the ignition means.