Laser segmented cutting
    1.
    再颁专利
    Laser segmented cutting 有权
    激光分段切割

    公开(公告)号:USRE43487E1

    公开(公告)日:2012-06-26

    申请号:US12350767

    申请日:2009-01-08

    IPC分类号: B23K26/04 C04B41/91

    摘要: UV laser cutting throughput through silicon and like materials is improved by dividing a long cut path (112) into short segments (122), from about 10 μm to 1 mm. The laser output (32) is scanned within a first short segment (122) for a predetermined number of passes before being moved to and scanned within a second short segment (122) for a predetermined number of passes. The bite size, segment size (126), and segment overlap (136) can be manipulated to minimize the amount and type of trench backfill. Real-time monitoring is employed to reduce rescanning portions of the cut path 112 (112) where the cut is already completed. Polarization direction of the laser output (32) is also correlated with the cutting direction to further enhance throughput. This technique can be employed to cut a variety of materials with a variety of different lasers and wavelengths. A multi-step process can optimize the laser processes for each individual layer.

    摘要翻译: 通过将长切割路径(112)分割成约10微米至1mm的短段(122)来提高通过硅等材料的UV激光切割吞吐量。 激光输出(32)在第一短段(122)内扫描预定数量的通过,然后移动到第二短段(122)内并在第二短段(122)内扫描预定次数的通过次数。 可以操纵咬合尺寸,段尺寸(126)和段重叠(136)以最小化沟槽回填的数量和类型。 采用实时监测来减少已经完成切割的切割路径112(112)的重新扫描部分。 激光输出(32)的极化方向也与切割方向相关,以进一步提高吞吐量。 该技术可用于切割具有各种不同激光和波长的各种材料。 多步骤过程可以优化每个单独层的激光工艺。

    Laser segmented cutting, multi-step cutting, or both
    2.
    再颁专利
    Laser segmented cutting, multi-step cutting, or both 有权
    激光分段切割,多步切割或两者兼容

    公开(公告)号:USRE43605E1

    公开(公告)日:2012-08-28

    申请号:US12351562

    申请日:2009-01-09

    IPC分类号: B23K26/04 C04B41/91

    摘要: UV laser cutting throughput through silicon and like materials is improved by dividing a long cut path (112) into short segments (122), from about 10 μm to 1 mm. The laser output (32) is scanned within a first short segment (122) for a predetermined number of passes before being moved to and scanned within a second short segment (122) for a predetermined number of passes. The bite size, segment size (126), and segment overlap (136) can be manipulated to minimize the amount and type of trench backfill. Real-time monitoring is employed to reduce rescanning portions of the cut path 112 (112) where the cut is already completed. Polarization direction of the laser output (32) is also correlated with the cutting direction to further enhance throughput. This technique can be employed to cut a variety of materials with a variety of different lasers and wavelengths. A multi-step process can optimize the laser processes for each individual layer.

    摘要翻译: 通过将长切割路径(112)分割成约10微米至1mm的短段(122)来提高通过硅等材料的UV激光切割吞吐量。 激光输出(32)在第一短段(122)内扫描预定数量的通过,然后移动到第二短段(122)内并在第二短段(122)内扫描预定次数的通过次数。 可以操纵咬合尺寸,段尺寸(126)和段重叠(136)以最小化沟槽回填的数量和类型。 采用实时监测来减少已经完成切割的切割路径112(112)的重新扫描部分。 激光输出(32)的极化方向也与切割方向相关,以进一步提高吞吐量。 该技术可用于切割具有各种不同激光和波长的各种材料。 多步骤过程可以优化每个单独层的激光工艺。

    Ultraviolet laser ablative patterning of microstructures in semiconductors
    4.
    发明授权
    Ultraviolet laser ablative patterning of microstructures in semiconductors 有权
    半导体微结构的紫外激光烧蚀图案化

    公开(公告)号:US07157038B2

    公开(公告)日:2007-01-02

    申请号:US10017497

    申请日:2001-12-14

    IPC分类号: B23K26/38

    摘要: Patterns with feature sizes of less than 50 microns are rapidly formed directly in semiconductors, particularly silicon, GaAs, indium phosphide, or single crystalline sapphire, using ultraviolet laser ablation. These patterns include very high aspect ratio cylindrical through-hole openings for integrated circuit connections; singulation of processed die contained on semiconductor wafers; and microtab cutting to separate microcircuit workpieces from a parent semiconductor wafer. Laser output pulses (32) from a diode-pumped, Q-switched frequency-tripled Nd:YAG, Nd:YVO4, or Nd:YLF is directed to the workpiece (12) with high speed precision using a compound beam positioner. The optical system produces a Gaussian spot size, or top hat beam profile, of about 10 microns. The pulse energy used for high-speed ablative processing of semiconductors using this focused spot size is greater than 200 μJ per pulse at pulse repetition frequencies greater than 5 kHz and preferably above 15 kHz. The laser pulsewidth measured at the full width half-maximum points is preferably less than 80 ns.

    摘要翻译: 特征尺寸小于50微米的图案使用紫外激光烧蚀直接在半导体,特别是硅,GaAs,磷化铟或单晶蓝宝石中形成。 这些图案包括用于集成电路连接的非常高的纵横比圆柱形通孔开口; 包含在半导体晶片上的加工芯片的分割; 和微型切割以从母半导体晶片分离微电路工件。 来自二极管泵浦Q开关频率三倍的Nd:YAG,Nd:YVO 4或Nd:YLF的激光输出脉冲(32)以高速精度被引导到工件(12) 使用复合光束定位器。 光学系统产生约10微米的高斯光点尺寸或顶帽光束轮廓。 用于使用这种聚焦光点尺寸的半导体高速烧蚀处理的脉冲能量大于5kHz,优选高于15kHz的脉冲重复频率时,每脉冲大于200μJ。 在全宽度半最大点处测量的激光脉冲宽度优选小于80ns。