摘要:
The present invention is directed to a method for improving the adhesion of epoxy resins to steel substrates which comprises first removing the oxide surface layer, preferably by chemical means, and then pretreating the substrate with a solution of at least one coupling agent selected from the group consisting of .beta.-diketones and mercaptoesters. The invention also provides a method for improving the adhesion of epoxy resins to steel substrates by pretreating with citric acid or a salt thereof.
摘要:
The present subject matter relates generally to polymer compositions, and more particularly to irradiated polymer compositions comprising at least one non-phenolic stabilizer. The present polymer compositions comprise an unexpected balance of properties after being subjected to irradiation treatments, including an unexpected combination of a lower melt flow rate ratio (MFRr) and high melt tension after being irradiated, while minimizing negative yellowing effects.
摘要:
The present invention relates to a process comprising extruding a blend of an first propylene polymer comprising a non-phenolic stabilizer and a non-irradiated second propylene polymer, wherein the irradiation of the first propylene polymer was conducted in a reduced oxygen environment, and the irradiated first propylene polymer and the non-irradiated second propylene polymer were blended at a temperature below the melting point of the first and second propylene polymers.
摘要:
A process of extruding a blend of an irradiated first propylene polymer and a non-irradiated second propylene polymer, where the first propylene polymer comprises a non-phenolic stabilizer. The irradiation of the first propylene polymer extrudate is conducted in a reduced oxygen environment, and the irradiated first propylene polymer and the non-irradiated second propylene polymer are blended at a temperature below their respective melting points. The blend has a viscosity retention of 20 to 35%.
摘要:
A process of extruding a blend of an irradiated extrudate of a first propylene polymer and a non-irradiated second propylene polymer, where the first propylene polymer comprises a non-phenolic stabilizer. The irradiation of the first propylene polymer extrudate is conducted in a reduced oxygen environment, and the irradiated extrudate of the first propylene polymer and the non-irradiated second propylene polymer are blended at a temperature below their respective melting points. The blend has an ARPSW of ≦3.0 micron.