摘要:
A ferrule assembly having highly protruding optical fibers and a corresponding method of efficiently, precisely and repeatedly fabricating the ferrule assemblies are provided. In this regard, a ferrule assembly is provided that includes a plurality of optical fibers extending at least about 3.5 μm beyond the front face. The end portions of the optical fibers of the ferrule assembly may also be substantially coplanar with the end portions of the optical fibers differing in position from one another by no more than 100 nm. The ferrule assembly may be efficiently fabricated by polishing the optical fibers to a desired protrusion without first grinding or polishing the optical fibers to be flush with the front face of the ferrule. The ferrule assembly may be even more efficiently fabricated in instances in which the ferrule includes at least one polishing feature, such as an outwardly extending pedestal or a recessed portion.
摘要:
A ferrule assembly having highly protruding optical fibers and a corresponding method of efficiently, precisely and repeatedly fabricating the ferrule assemblies are provided. In this regard, a ferrule assembly is provided that includes a plurality of optical fibers extending at least about 3.5 μm beyond the front face. The end portions of the optical fibers of the ferrule assembly may also be substantially coplanar with the end portions of the optical fibers differing in position from one another by no more than 100 nm. The ferrule assembly may be efficiently fabricated by polishing the optical fibers to a desired protrusion without first grinding or polishing the optical fibers to be flush with the front face of the ferrule. The ferrule assembly may be even more efficiently fabricated in instances in which the ferrule includes at least one polishing feature, such as an outwardly extending pedestal or a recessed portion.
摘要:
A factory-prepared preterminated and pre-connectorized fiber optic distribution cable having at least one mid-span access location for providing access to a plurality of preterminated optical fibers pre-connectorized with a multi-fiber connector is provided. Also provided is a method of forming a pre-connectorized fiber optic distribution cable by terminating and pre-connectorizing a predetermined number of the plurality of optical fibers of the cable to create a pre-connectorized mid-span access location. The fiber optic distribution cable provides a low profile mid-span access location that is sufficiently flexible to be installed through relatively small-diameter buried conduits and over aerial installation sheave wheels and pulleys without violating the minimum bend radius of the cable or the optical fibers. A protective encapsulant protects and seals the mid-span access location during cable reeling, unreeling, installation and until the access location is needed for interconnecting a connectorized fiber optic drop or branch cable.
摘要:
A factory prepared fiber optic distribution cable has at least one predetermined access location for providing access to at least one pre-connectorized optical fiber. The fiber optic distribution cable includes at least one preterminated optical fiber withdrawn from a tubular body at the access location, a connector attached to the preterminated optical fiber, a transition piece for transitioning the preterminated optical fiber from the tubular body into a protective tube, and a protective shell encapsulating the access location for protecting the pre-connectorized optical fiber. Alternatively, the fiber optic distribution cable includes at least one preterminated optical fiber withdrawn from a tubular body, a transition piece for transitioning the preterminated optical fiber from the tubular body into a protective tube, a connector attached to the preterminated optical fiber, a plurality of cable centralizers, and a protective shell for encapsulating the access location and protecting the pre-connectorized optical fiber.
摘要:
A factory prepared fiber optic distribution cable has at least one predetermined access location for providing access to at least one pre-connectorized optical fiber. The fiber optic distribution cable includes at least one preterminated optical fiber withdrawn from a tubular body at the access location, a connector attached to the preterminated optical fiber, a transition piece for transitioning the preterminated optical fiber from the tubular body into a protective tube, and a protective shell encapsulating the access location for protecting the pre-connectorized optical fiber. Alternatively, the fiber optic distribution cable includes at least one preterminated optical fiber withdrawn from a tubular body, a transition piece for transitioning the preterminated optical fiber from the tubular body into a protective tube, a connector attached to the preterminated optical fiber, a plurality of cable centralizers, and a protective shell for encapsulating the access location and protecting the pre-connectorized optical fiber.
摘要:
An adjustable tether assembly for a fiber optic distribution cable includes a tether cable and an overmolded housing secured at the end of the tether cable having at least one connector port. The tether assembly is attached to the distribution cable such that the position of the connector port is adjustable along the length of the distribution cable for mitigating differences between the pre-engineered span length distance and the actual span length distance following installation of the distribution cable. A method for mitigating a span length measurement difference in a pre-engineered fiber optic communications network is provided that includes optically connecting an adjustable tether assembly at a mid-span access location of a fiber optic distribution cable and positioning a housing secured at the free end of a tether cable having at least one connector port at a desired location in the network to compensate for the span length measurement difference.
摘要:
Eccentricity of a optical fiber installed in a passageway of a ferrule is minimized by imposing a force on the end of the optical fiber projecting from the passageway at the ferrule end face to push the optical fiber to a desired position in the passageway, prior to curing an adhesive used for fixing the optical fiber in the passageway, so as to compensate for eccentricity of the passageway. In one embodiment, the force is imposed on the optical fiber by hanging a weight on the optical fiber. In another embodiment, the force is imposed on the optical fiber by using a pressurized jet of fluid. The point of application of the force, the magnitude of the force, and the viscosity of the adhesive are selected such that minimal optical fiber bending occurs, thereby assuring that the optical fiber is positioned at the desired position in the passageway for an appreciable distance from the ferrule end face along the passageway.
摘要:
Eccentricity of a optical fiber installed in a passageway of a ferrule is minimized by imposing a force on the end of the optical fiber projecting from the passageway at the ferrule end face to push the optical fiber to a desired position in the passageway, prior to curing an adhesive used for fixing the optical fiber in the passageway, so as to compensate for eccentricity of the passageway. In one embodiment, the force is imposed on the optical fiber by hanging a weight on the optical fiber. In another embodiment, the force is imposed on the optical fiber by using a pressurized jet of fluid. The point of application of the force, the magnitude of the force, and the viscosity of the adhesive are selected such that minimal optical fiber bending occurs, thereby assuring that the optical fiber is positioned at the desired position in the passageway for an appreciable distance from the ferrule end face along the passageway.
摘要:
Optical couplings for making and optical connection between one or more devices are disclosed. In one embodiment, an optical coupling includes a coupling face, an optical interface within the coupling face, an optical component positioned within the optical interface, and at least one coded magnetic array. The at least one coded magnetic array may include a plurality of magnetic regions configured aid in mating the optical component with a corresponding optical component of a complementary mated optical coupling to a predetermined tolerance for optical communication. Optical cable assemblies and electronics devices having optical couplings with optical interfaces using coded magnetic arrays are also disclosed.
摘要:
Cable assemblies, optical connector assemblies, and optical connector subassemblies employing a translating element and a unitary alignment pin are disclosed. In one embodiment, an optical connector assembly includes a connector housing defining a connector enclosure and a connector housing opening, a unitary alignment pin including a first pin portion and a second pin portion, and a translating element including a first bore, a second bore, and an optical interface. The unitary alignment pin is secured within the connector enclosure. The first pin portion is disposed within the first bore and the second pin portion is disposed within the second bore such that the translating element translates along the first pin portion and the second pin portion within the connector enclosure.