摘要:
Optical data processing systems are described for processing four NxN matrices A, B, C, D to calculate the expression CA.sup.-1 B+D. Multi-cell spatial light modulators are employed in conjunction with control circuits to perform matrix inversion, multiplication and addition.
摘要:
Associative holography memory apparatus is disclosed which employs a hologram, two phase conjugate mirrors, and a two-wave mixing contra-directional coherent image amplifier. The mirrors and amplifier are arranged to form a conjugate resonator whereby the output image from the apparatus tends to converge to that stored image most closely associated with an input image. Alternate embodiments are described which employ a multiple storage and erasure hologram, and which employ only a single phase conjugate mirror.
摘要:
Associative holography memory apparatus is disclosed which employs a hologram and two phase conjugate mirrors. The mirrors are arranged to form a conjugate resonator whereby the output image from the apparatus tends to converge to that stored image most closely associated with an input image. Alternate embodiments are described which employ a multiple storage and erasure hologram, and which employ only a single phase conjugate mirror.
摘要:
Optical analog data processing systems are described for handling both bipolar and complex data. Multi-cell spatial light modulators are employed in which a plurality of modulation areas are used in conjunction with space and time mutliplexed configurations to process bipolar and complex data elements. Multi-cell light detector arrays are used to convert modulated light into signals representing the processed data. The processing systems are capable of real time processing of synthetic aperture radar data.
摘要:
An optical beam scanner incorporating an array of beam deflection elements commonly controlled to steer an optical beam impingent on the array is described. The beam steering elements are arranged in the array as individually controlled elements and the deflection of the beam is accomplished by setting the phase tilt and the phase offset of each element according to a calculation which removes modulo 2.pi. phase shift from the required position relative to a flat plane. Thus, the array elements can be thin and need only supply about 2 radians of phase shift. These elements may be incorporated in a planar array using beam deflection elements such as liquid crystal beam deflectors by choosing a drive scheme representing either a blazed array or a flat piston array. Operation may be designed for a large range of light wavelengths and the system may efficiently accommodate a combination of the blazed and flat piston techniques to obtain beam deflection characteristics otherwise unavailable by the exclusive use of each individual technique. By use of the liquid crystal phased array approach, rapid, high accuracy, large area beam deflection is possible without the necessity of any moving parts and with low power drive requirements. Phased arrays of the type described above may be arranged in successive parallel planes with a common beam axis to provide two-dimensional beam deflection.
摘要:
An optical beam scanner incorporating an array of beam deflection elements commonly controlled to steer an optical beam impingent on the array is described. The beam steering elements are arranged in the array as individually controlled elements and the deflection of the beam is accomplished by setting the phase tilt and the phase offset of each element according to a calculation which removes modulo 2.pi. phase shift from the required position relative to a flat plane. Thus, the array elements can be thin and need only supply about 2 radians of phase shift. These elements may be incorporated in a planar array using beam deflection elements such as liquid crystal beam deflectors by choosing a drive scheme representing either a blazed array or a flat piston array. Operation may be designed for a large range of light wavelengths and the system may efficiently accommodate a combination of the blazed and flat piston techniques to obtain beam deflection characteristics otherwise unavailable by the exclusive use of each individual technique. By use of the liquid crystal phased array approach, rapid, high accuracy, large area beam deflection is possible without the necessity of any moving parts and with low power drive requirements. Phased arrays of the type described above may be arranged in successive parallel planes with a common beam axis to provide two-dimensional beam deflection.
摘要:
A high frequency spectral analysis system and method operates by modulating an optical beam with a high frequency signal to be analyzed, and sampling the beam simultaneously at periodically spaced locations along its length. The sampled portions are then focused to a spectral mapping. In the preferred embodiment a beam is directed in a zigzag pattern through a plate, one surface of which is totally reflective and the opposite surface of which is partially reflective. Periodic parallel samples are obtained from the minor portions of the beam which are transmitted out of the plate through the partially reflective surface. The totally reflective surface is preferably formed as a series of cylindrical surfaces which focus the beam to small spots at the partially reflective surface, thereby permitting a higher spatial density of samples without overlapping. The plate thickness is selected so that the beam is sampled at the Nyquist rate for the highest frequency contained in the signal of interest.
摘要:
A light deflector apparatus and method is disclosed which provides an optical intensity-to-position mapping as well as optical switching capabilities. An array of voltage gradient modules (24, 26, 28) are provided in a layer of electro-optic material (52), such as liquid crystals, by establishing variable spatial voltage gradients and accompanying electric fields in a direction transverse to input light (58). The voltage gradients are varied in accordance with the optical intensities at corresponding locations in the received light (58), resulting in optical outputs which vary in direction in accordance with the voltage gradient locations. The directional outputs are then focused to produce a positional mapping (64, 66, 68) of the input light intensities. The voltage gradients are preferably established by an interdigitated electrode array (50) and a counter electrode (54) on opposite sides of the liquid crystal (52). Reflective and transmissive light valve embodiments are described in which the voltage gradient modules form voltage dividers with an underlying photoconductive layer (56). A fiber optic switch is also described. Also described is a system in which the refractive indices of an array of small variable refraction modules are varied in accordance with the spatial optical intensities at corresponding locations in an input beam to produce as output, optical intensity-to-position mapping.
摘要:
An associative memory system incorporating a hologram, a spatial light modulator (SLM) and thresholding components in a feedback loop to derive an enhanced reference beam for use in reconstructing a stored image. In a preferred embodiment, the SLM includes a liquid crystal light valve (LCLV). A polarizing thresholding analyzer device provides adjustable thresholding. An enhanced thresholded reference beam thereby derived is sent back to the hologram for readout and the stored image is reconstructed at the output plane of the system. In an alternative embodiment, two spatial light modulators and two feedback loops are provided in a resonator configuration.
摘要:
Apparatus for performing a division of a dividend intensity array by a divisor intensity array on a pixel-by-pixel basis, to yield a quotient intensity array, wherein optical feedback principles are utilized in conjunction with two spatial radiation modulators, so that analog division is achieved. Specifically, a fraction of the output array of a first spatial radiation modulator is provided as the readout array to a second spatial radiation modulator, whose input is the divisor intensity array. The output array of the second image converter is then added to the dividend array and provided as the input to the first spatial radiation modulator, whereupon the output of the first spatial radiation modulator is the pixel-by-pixel quotient array resulting from division of the dividend array by the divisor array.