Abstract:
Provided is a display device having first to third light-emitting elements. The first to third light-emitting elements each include: a first electrode; a hole-transporting layer over the first electrode; an emission layer over the hole-transporting layer; a hole-blocking layer over and in contact with the emission layer; an electron-transporting layer over and in contact with the hole-blocking layer; and a second electrode over the electron-transporting layer. An emission wavelength of the second light-emitting element is longer than that of the first light-emitting element and shorter than that of the third light-emitting element. A total thickness of the hole-blocking layer and the electron-transporting layer in the second light-emitting element is larger than that in the first light-emitting element and smaller than that in the third light-emitting element. A thickness of the hole-blocking layer is larger than that of the electron-transporting layer in each of the first to third light-emitting elements.
Abstract:
Provided is a display device including first to third pixels and first to fourth cap layers. The first cap layer is located over and overlaps with the first to third light-emitting elements and extends from the first pixel to the third pixel through the second pixel. The second and third cap layers are located over the first cap layer and respectively overlap with the second and third light-emitting elements. The fourth cap layer is located over the first to fourth cap layers. The first to third pixels are arranged in this order. The first to third light-emitting elements are configured so that an emission wavelength of the second light-emitting element is shorter than an emission wavelength of the third light-emitting element and longer than an emission wavelength of the first light-emitting element. A thickness of the third cap layer is larger than a thickness of the second cap layer.
Abstract:
A display device includes a plurality of pixel electrodes which are provided separately from each other on an insulative surface; a first layer which is provided separately from each other on the respective plurality of pixel electrodes, and includes a plurality of first carrier transport layers or a plurality of first carrier injection layers; a pixel separation film which is provided on the first layer, and includes a plurality of opening portions in each region which overlaps with the respective plurality of pixel electrodes in a planar view; a light emitting layer which is provided so as to cover at least one of the plurality of opening portions; a second layer which is provided on the light emitting layer, and includes a second carrier transport layer or a second carrier injection layer; and a counter electrode which is provided on the second layer.
Abstract:
An organic electroluminescent element is formed to have a transparent electrode as a cathode. An ultraviolet-absorbing layer having a higher ultraviolet absorptivity than the transparent electrode is formed on the transparent electrode. A sealing film is formed on the ultraviolet-absorbing layer by a plasma CVD process.
Abstract:
A display device according to an embodiment of the present invention includes: an underlying structure layer; a first lower electrode that is arranged on the underlying structure layer; multiple lower electrodes including a second lower electrode adjacent to the first lower electrode; an organic layer that is arranged on the multiple lower electrodes; an upper electrode that is arranged on the organic layer; a first through hole that is arranged between the first lower electrode and the second lower electrode and includes a first inorganic layer at least in a part of an inner face; and a second inorganic layer that is arranged on the upper electrode and is in contact with the first inorganic layer in the inner face of the first through hole.
Abstract:
A display device includes an anode, a hole injection layer, a hole transport layer, a blue light emitting layer, a hole blocking layer, an electron transport layer and/or an electron injection layer, and a cathode, which are stacked in this order, and has the following characteristics (i), (ii), and (iii): (i) the hole mobility of the blue light emitting layer≥the electron mobility of the blue light emitting layer, (ii) the hole mobility of the hole transport layer≥the electron mobility of the blue light emitting layer, and (iii) |the HOMO value of the blue light emitting layer−the HOMO value of the hole blocking layer|≥0.4 eV.
Abstract:
Provided is a display device including first to third pixels and first to fourth cap layers. The first cap layer is located over and overlaps with the first to third light-emitting elements and extends from the first pixel to the third pixel through the second pixel. The second and third cap layers are located over the first cap layer and respectively overlap with the second and third light-emitting elements. The fourth cap layer is located over the first to fourth cap layers. The first to third pixels are arranged in this order. The first to third light-emitting elements are configured so that an emission wavelength of the second light-emitting element is shorter than an emission wavelength of the third light-emitting element and longer than an emission wavelength of the first light-emitting element. A thickness of the third cap layer is larger than a thickness of the second cap layer.
Abstract:
A display device including a pixel electrode, a counter electrode, and an organic layer arranged between the pixel electrode and the counter electrode, wherein the organic layer includes a hole injection layer in contact with the pixel electrode, a hole transport layer above the hole injection layer, a light emitting layer and an electron transport layer, the hole injection layer includes an inorganic material, and the inorganic material has a work function of 4.4 eV or less and includes one element or a plurality of elements selected from Na, Mg, K, Rb, Sr, Cs, Ba, Fr, Ca, Yb, Li, Al, Sm, Er and Ho, or a fluoride or an oxide of the elements.
Abstract:
Provided is a display device having first to third light-emitting elements. The first to third light-emitting elements each include: a first electrode; a hole-transporting layer over the first electrode; an emission layer over the hole-transporting layer; a hole-blocking layer over and in contact with the emission layer; an electron-transporting layer over and in contact with the hole-blocking layer; and a second electrode over the electron-transporting layer. An emission wavelength of the second light-emitting element is longer than that of the first light-emitting element and shorter than that of the third light-emitting element. A total thickness of the hole-blocking layer and the electron-transporting layer in the second light-emitting element is larger than that in the first light-emitting element and smaller than that in the third light-emitting element. A thickness of the hole-blocking layer is larger than that of the electron-transporting layer in each of the first to third light-emitting elements.
Abstract:
A light emitting device includes a pixel electrode, an organic layer, and a counter electrode, wherein the organic layer includes a first organic layer having a hole injecting property, a second organic layer having a hole transporting property, a third organic layer having an electron blocking property, a light emitting layer containing a host material and a dopant material, a fourth organic layer having a hole blocking property, and a fifth organic layer having an electron transporting property, wherein the fifth organic layer includes an alkali metal such as calcium or lithium and the like or an alkaline earth metal, and a total layer thickness of the first organic layer, the second organic layer, and the third organic layer is smaller than a total layer thickness of the fourth organic layer and the fifth organic layer.