Abstract:
A liquid crystal display device includes a first substrate, a second substrate, and a liquid crystal material sandwiched between the first and second substrate. The second substrate has a touch screen electrode directly on a front-side surface of the second substrate. The first substrate has a wiring line for supplying a position detection voltage. A conductive tape electrically connects between the touch screen electrode and a driver circuit. A polarization plate is disposed above the touch screen electrode.
Abstract:
A coordinate input device includes: a coordinate input unit having a plurality of first detection electrodes and a plurality of second detection electrodes; an electrode drive circuit that applies a drive signal to one or more of the detection electrodes; a detection circuit that detects a signal of the first and/or second detection electrode; a selection circuit for selecting one or more of the detection electrodes to which the drive signal is not applied from among the detection electrodes which are disposed in parallel to the detection electrodes to which the drive signal is applied, as a reference electrode; a detection circuit for detecting a signal of the selected reference electrode; an input coordinate computing circuit for correcting a detection result of the detection circuit on the basis of the detected capacitance of the reference electrode and for calculating an input coordinate from the corrected detection result.
Abstract:
A liquid crystal display device includes a first substrate, a second substrate, and a liquid crystal material sandwiched between the first and second substrate. The second substrate has a touch screen electrode directly on a front-side surface of the second substrate. The first substrate has a wiring line for supplying a position detection voltage. A conductive tape electrically connects between the touch screen electrode and a driver circuit. A polarization plate is disposed above the touch screen electrode.
Abstract:
A coordinate input device includes: a coordinate input unit having a plurality of first detection electrodes and a plurality of second detection electrodes; an electrode drive circuit that applies a drive signal to one or more of the detection electrodes; a detection circuit that detects a signal of the first and/or second detection electrode; a selection circuit for selecting one or more of the detection electrodes to which the drive signal is not applied from among the detection electrodes which are disposed in parallel to the detection electrodes to which the drive signal is applied, as a reference electrode; a detection circuit for detecting a signal of the selected reference electrode; an input coordinate computing circuit for correcting a detection result of the detection circuit on the basis of the detected capacitance of the reference electrode and for calculating an input coordinate from the corrected detection result.
Abstract:
A display device capable of suppressing the display quality deterioration is provided even if an optically transparent nondisplay area is formed inside the display area of the display panel of the display device. The display device comprises a display panel including signal lines, scanning lines, and pixels that are connected to the signal lines and scanning lines and surrounded by the signal lines and scanning lines. The display panel includes a display area and an optically transparent nondisplay area inside the display area, and a drive circuit for driving the signal lines. The drive circuit includes at least one of a first drive scheme wherein drive voltages are set smaller as distances between adjacent signal lines corresponding to the drive circuit are shorter, a second drive scheme in which the rising speed of drive waveforms are set smaller as distances between adjacent signal lines corresponding to the drive circuit are shorter, and a third drive scheme in which drive times are set longer as distances between adjacent signal lines corresponding to the drive circuit are shorter.
Abstract:
A display device includes a gate scanning circuit and a driver IC. The driver IC includes a voltage detection circuit for detecting a voltage level of an external power supply, a voltage generation circuit for generating the voltage for driving the gate line, a switching circuit for switching between the output voltage of the voltage generation circuit and the voltage of the external power supply, and a drive circuit. Upon detection of the voltage outside of the predetermined voltage range by the voltage detection circuit, the switching circuit supplies the voltage of the external power supply to the gate scanning circuit. The gate scanning circuit selects all gate lines for outputting the voltage of the external power supply. The drive circuit supplies the GND level to all the source lines.
Abstract:
A capacitance detection device of a capacitance system includes: a capacitance sensor electrode for detecting a capacitance; a power source for supplying charges to be charged in the capacitance sensor electrode; an electric charge storage capacitor in which an amount of charges to be charged therein changes according to the electric charges charged in the capacitance sensor electrode; and a switch for changing a reference potential of the electric charge storage capacitor. The reference potential of the electric charge storage capacitor is changed in a period of measuring the capacitance.
Abstract:
A coordinate input device includes: a coordinate input unit having a plurality of first detection electrodes and a plurality of second detection electrodes; an electrode drive circuit that applies a drive signal to one or more of the detection electrodes; a detection circuit that detects a signal of the first and/or second detection electrode; a selection circuit for selecting one or more of the detection electrodes to which the drive signal is not applied from among the detection electrodes which are disposed in parallel to the detection electrodes to which the drive signal is applied, as a reference electrode; a detection circuit for detecting a signal of the selected reference electrode; an input coordinate computing circuit for correcting a detection result of the detection circuit on the basis of the detected capacitance of the reference electrode and for calculating an input coordinate from the corrected detection result.
Abstract:
A display device includes: pixels arranged in a display region; photodiodes provided in two or more of the pixels, respectively; a shift register circuit configured to sequentially output an output signal to the pixels and the photodiodes; a switching circuit configured to switch coupling between the shift register circuit and the pixels, and coupling between the shift register circuit and the photodiodes; and a control circuit configured to control a display period for display by the pixels and a detection period for detection by the photodiodes in a time division manner. The control circuit is configured to sequentially output a gate drive signal to the pixels by an operation of the shift register circuit and the switching circuit in the display period, and sequentially output a sensor control signal to the photodiodes by an operation of the shift register circuit and the switching circuit in the detection period.
Abstract:
A display device includes a gate scanning circuit and a driver IC. The driver IC includes a voltage detection circuit for detecting a voltage level of an external power supply, a voltage generation circuit for generating the voltage for driving the gate line, a switching circuit for switching between the output voltage of the voltage generation circuit and the voltage of the external power supply, and a drive circuit. Upon detection of the voltage outside of the predetermined voltage range by the voltage detection circuit, the switching circuit supplies the voltage of the external power supply to the gate scanning circuit. The gate scanning circuit selects all gate lines for outputting the voltage of the external power supply. The drive circuit supplies the GND level to all the source lines.