Abstract:
A color filter type EL display device in which the deterioration of a light-emitting layer is prevented, which can be manufactured by a gang-printing method, and whose cost in manufacture is reduced includes: a display area having a plurality of pixels; a frame area surrounding the display area; lower electrodes each formed in each of pixels; an insulating layer separating the pixels; a light-emitting EL layer formed on the lower electrodes and the insulating layer so as to straddle the plurality of pixels; an upper electrode formed on the EL layer so as to straddle the plurality of pixels; and a sealing layer formed on the upper electrode. In the frame area, the upper electrode and the insulating layer contact each other, or the sealing layer and the insulating layer contact each other, so as to surround the display area.
Abstract:
A display device of the invention includes: a self-light-emitting display panel including a first substrate and a second substrate; a first heat-shrinkable film for anti-reflection bonded to a surface of the first substrate on the side opposite to the second substrate and having different shrinkage rates depending on directions; and a second heat-shrinkable film bonded to a surface of the second substrate on the side opposite to the first substrate and having different shrinkage rates depending on directions, wherein a first shrinkage direction that is a direction having a highest shrinkage rate among directions in which the first heat-shrinkable film shrinks is the same as a second shrinkage direction that is a direction having a highest shrinkage rate among directions in which the second heat-shrinkable film shrinks.
Abstract:
A liquid crystal display device includes a first substrate and a second substrate which are disposed to face each other with liquid crystal interposed therebetween and a sealing material which is disposed between the first substrate and the second substrate to seal the liquid crystal, wherein a side surface of the liquid crystal display device has a cut surface, and a first resin layer which is formed along the sealing material and has a height less than a gap between the first substrate and the second substrate in a display region and the sealing material are exposed at the cut surface.
Abstract:
Display device includes a flexible substrate, a plurality of pixels disposed on a first surface of flexible substrate, and a plurality of alignment marks disposed along one side of the flexible substrate and identified each other. The plurality of alignment marks may be arranged in the same layer. When the plurality of pixels includes thin film transistor, the plurality of alignment marks may be formed of the same metal layer as the metal layer forming thin film transistor.
Abstract:
An OLED display device includes a first substrate including a plurality of pixels located in a matrix and a second substrate facing the first substrate. The plurality of pixels each include a pixel circuit to which a data voltage is written and an OLED display element including a first electrode supplied with a current from the pixel circuit in accordance with the data voltage, and a second electrode supplied with a power supply voltage. The first substrate and the second substrate each include a plurality of power supply lines; the plurality of power supply lines of the first substrate and the plurality of power supply lines of the second substrate are respectively connected to each other via a conductive member; and each of the plurality of power supply lines is connected to the second electrode of the OLED display element.
Abstract:
Display device includes a flexible substrate, a plurality of pixels disposed on a first surface of flexible substrate, and a plurality of alignment marks disposed along one side of the flexible substrate and identified each other. The plurality of alignment marks may be arranged in the same layer. When the plurality of pixels includes thin film transistor, the plurality of alignment marks may be formed of the same metal layer as the metal layer forming thin film transistor.
Abstract:
A display device includes a pixel area. The plurality of pixels, each includes pixel electrodes; banks; an EL layer; a counter electrode; and a sealing substrate. The plurality of pixels each include a plurality of sub pixels demarcated by the banks; the sealing substrate includes red, blue and green color filters; the plurality of sub pixels each include an effective light emission area and a light-blocked area; the effective light emission area of the blue color filter has an area size larger than that of each of the effective light emission area of the red and green color filter; and an effective light emission area of one sub pixel adjacent to the sub pixel including the blue color filter is located at a position closest, in the one sub pixel, to the light-blocked area of the sub pixel including the blue color filter.
Abstract:
An organic electroluminescent display device of the invention includes an element substrate, an organic electroluminescent light-emitting element disposed on the element substrate, and a sealing film disposed on the organic electroluminescent light-emitting element, wherein the organic electroluminescent light-emitting element includes an anode formed of metal and disposed on the element substrate, a light-emitting layer disposed on the anode, and a transparent cathode disposed on the light-emitting layer, and the sealing film includes a light-transmittance-reducing layer colored in black.
Abstract:
A liquid crystal display device includes a first substrate and a second substrate which are disposed to face each other with liquid crystal interposed therebetween and a sealing material which is disposed between the first substrate and the second substrate to seal the liquid crystal, wherein a side surface of the liquid crystal display device has a cut surface, and a first resin layer which is formed along the sealing material and has a height less than a gap between the first substrate and the second substrate in a display region and the sealing material are exposed at the cut surface.