Abstract:
The present invention features a non-peripherals-based processing control unit having an encasement module that is very small and durable compared to conventional computer encasement structures. The process control unit is capable of being incorporated into various devices and/or environments, of accepting applied and impact loads, of functioning as a load bearing structure, as well as being able to be processed coupled together with one or more processing control units to provide scaled processing power. The processing control unit of the present invention further features a unique method of cooling using natural convection, as well as utilizing known cooling means, such as liquid or thermoelectric cooling.
Abstract:
Systems and methods for providing a modular processing unit. A modular processing unit is provided as a platform that is lightweight, compact, and is configured to be selectively used alone or oriented with one or more additional processing units in an enterprise. In some implementations, a modular processing unit includes a non-peripheral based encasement, a cooling process (e.g., a thermodynamic convection cooling process, a forced air cooling process, and/or a liquid cooling process), an optimized circuit board configuration, optimized processing and memory ratios, and a dynamic back plane that provides increased flexibility and support to peripherals and applications. The modular processing unit is customizable and may be employed in association with all types of computer enterprises. The platform allows for a plethora of modifications that may be made with minimal impact to the modular unit, thereby enhancing the usefulness of the platform across all type of application.
Abstract:
The present invention features a robust customizable computing system comprising: a processing control unit; an external object; and means for operably connecting the processing control unit to the external object, the processing control unit introducing intelligence into the external object, thus causing the external object to perform smart functions. The processing control unit preferably comprises: (a) an encasement module comprising a main support chassis having a plurality of wall supports and a plurality of junction centers containing means for supporting a computer component therein, a dynamic back plane that provides support for connecting peripheral and other computing components directly to a system bus without requiring an interface, means for enclosing the main support chassis and providing access to an interior portion of the encasement module; (b) one or more computer processing components disposed within the junction centers of the encasement module; and (c) means for cooling the interior portion of the encasement module.
Abstract:
The present invention features a non-peripherals-based processing control unit having an encasement module that is very small and durable compared to conventional computer encasement structures. The process control unit is capable of being incorporated into various devices and/or environments, of accepting applied and impact loads, of functioning as a load bearing structure, as well as being able to be processed coupled together with one or more processing control units to provide scaled processing power. The processing control unit of the present invention further features a unique method of cooling using natural convection, as well as utilizing known cooling means, such as liquid or thermoelectric cooling.
Abstract:
The present invention relates to dynamic hybrid storage. In particular, the present invention relates to utilization of a plurality of storage devices, recording media, or memories available to selectively store data, wherein the storage of the data is load balanced on the plurality of storage devices, recording media, or memories depending upon the nature of the data to be stored, the frequency of use of the data, and/or the type of data.
Abstract:
The present invention relates to systems and methods for providing a universal computing system. Implementations include a modular motherboard having two or more electronic circuit boards that are connected to form a motherboard. The two or more electronic circuit boards each include a security key structure on a connector for providing a keyed connector therebetween. Computing components may be provided on two of the major surfaces of the first electronic circuit board circuit board. Components are disclosed in which the computing system will not turn on unless the first printed circuit board is electrically connected to the second printed circuit board. A heat sink is disclosed that may be used in the universal computing system. A customizable encasement is disclosed. An expandable memory device is disclosed.
Abstract:
Systems and methods for distributing computing resources utilize a base module having certain processing resources. A peripheral module is communicatively connected to the base module and is configured to utilize processing resources of the base module using one or more input/output devices connected to the peripheral module. The peripheral module uses a minimum of power, utilizes only enough computing resources to pass input/output signals between the input/output devices at the peripheral module and the base module, and provides access to an additional session of the operating system of the base module without requiring that a separate instance of the operating system be loaded into memory of the base module. The peripheral module may serve essentially as an intelligent mounting bracket.
Abstract:
Systems and methods for mounting a modular processing unit that is configured to be selectively used alone or with other processing units in an enterprise. A modular processing unit is provided as a platform that is lightweight, compact, and is configured to be selectively used alone or oriented with one or more additional processing units (including base modules and/or peripheral modules) in an enterprise. The one or more processing units are dynamically mounted based upon the particular enterprise needed and corresponding environment. In at least some implementations, shock mounting is included to provide for needed shock and vibe requirements. In some implementations, the mounting system includes a fixed mounting system for environments that need to be fixably secured. In other implementations, a selectively releasable connector is provided to allow for ease in mounting and removing the dynamically modular processing unit. In other implementations, a press-fit connector is provided to allow for ease in mounting and removing the dynamically modular processing unit.
Abstract:
The present invention relates to a modular electronic storage unit. The unit includes an electronic circuit board riser. An electronic storage card having a storage device is removably coupled to the electronic circuit board riser and is in communication with the electronic circuit board riser. A controller is couple to the electronic circuit board rise that provides support for communicating between the electronic storage card and an external computing device. In one embodiment, two or more electronic storage cards are removably coupled to the electronic circuit board riser and are in a RAID. Further the controller is a RAID controller. In another embodiment, the storage device is a solid state storage device.
Abstract:
Systems and methods for intelligent and flexible management and monitoring of computer systems are provided using platform management controllers (PMCs) located on circuit boards of a computer system. The PMCs provide for enhanced circuit board certification and security, enhanced systems monitoring and reporting, and enhanced systems control. The PMCs also allow for emulation of processor-based devices and are low-power, low-cost and very fast when compared to the devices replaced and functionality provided. A power supply tracking apparatus helps to ensure that a first power input to an operational circuit maintains a predefined relationship to a second power input to the operational circuit. Systems and methods for receiving computer systems diagnostics information and for customizably displaying such information from a diagnostics monitoring device are incorporated into a computer system. The monitored computer system information is transmitted to a diagnostics device, such as by infrared or by a novel temporary wired connection.