摘要:
An implantable medical device (IMD) includes a telemetry module to communicate with an external device according to a given protocol. To establish a communication session, the IMD will extend active periods of reception on a given channel when some confirmed data is received from the external device. In addition, once a session has been opened, the programmer transmits a short data set (or preamble) for each cycle which the IMD is set to receive. This data set indicates whether additional data will or will not be sent. If no additional data is to be sent during that cycle, then the IMD powers down the receiver for that cycle.
摘要:
An implantable medical device (IMD) includes a telemetry module to communicate with an external device according to a given protocol. To establish a communication session, the IMD will extend active periods of reception on a given channel when some confirmed data is received from the external device. In addition, once a session has been opened, the programmer transmits a short data set (or preamble) for each cycle which the IMD is set to receive. This data set indicates whether additional data will or will not be sent. If no additional data is to be sent during that cycle, then the IMD powers down the receiver for that cycle.
摘要:
Embodiments of the invention include channel selection and mapping for medical device communication. The communication system can implement a two-stage listen before talk protocol to choose a channel for communication. The first stage samples the interference of each channel for a relatively short time and chooses the best signal. The second stage samples the channel selected by the first stage and samples it for a relatively longer time to confirm the channel selected by the first stage is the best channel for communication.
摘要:
An implantable medical device (“IMD”) as described herein includes adjustable power characteristics such as variable transmitter output power and variable receiver front end gain. These power characteristics can be adjusted in a dynamic manner based upon various operating aspects of the intended or actual IMD telemetry environment. These operating aspects may include the external telemetry device type, the IMD device type, and/or the type, context, or meaning of the telemetry data transmitted by the IMD. The IMD may process information related to these operating aspects to generate power scaling instructions or control signals that are interpreted by the IMD transmitter and/or the IMD receiver. Such adjustability enables the IMD to satisfy minimum telemetry requirements in a manner that does not waste power, thus extending the IMD battery life.
摘要:
An implantable medical device (“IMD”) as described herein includes an adjustable data retransmission scheme, which controls the manner in which data is retransmitted by the IMD. The retransmission feature can be adjusted in a dynamic manner based upon the type, context, or meaning of the telemetry data transmitted by the IMD. The IMD may process contextual meaning information that influences its data retransmission configuration. Such adjustability enables the IMD to satisfy minimum telemetry requirements in a manner that does not waste power, thus extending the IMD battery life.
摘要:
An implantable medical device (“IMD”) as described herein includes an adjustable data retransmission scheme, which controls the manner in which data is retransmitted by the IMD. The retransmission feature can be adjusted in a dynamic manner based upon the type, context, or meaning of the telemetry data transmitted by the IMD. The IMD may process contextual meaning information that influences its data retransmission configuration. Such adjustability enables the IMD to satisfy minimum telemetry requirements in a manner that does not waste power, thus extending the IMD battery life.
摘要:
An implantable medical device (“IMD”) as described herein includes adjustable power characteristics such as variable transmitter output power and variable receiver front end gain. These power characteristics are adjusted based upon the intended or actual implant depth of the IMD. The IMD may process an IMD implant depth value (provided by an external IMD programming device) to generate power scaling instructions or control signals that are interpreted by the IMD transmitter and/or the IMD receiver. Such adjustability enables the IMD to satisfy minimum telemetry requirements in a manner that does not waste power, thus extending the IMD battery life.
摘要:
An implantable medical device (“IMD”) as described herein includes adjustable power characteristics such as variable transmitter output power and variable receiver front end gain. These power characteristics can be adjusted in a dynamic manner based upon various operating aspects of the intended or actual IMD telemetry environment. These operating aspects may include the external telemetry device type, the IMD device type, and/or the type, context, or meaning of the telemetry data transmitted by the IMD. The IMD may process information related to these operating aspects to generate power scaling instructions or control signals that are interpreted by the IMD transmitter and/or the IMD receiver. Such adjustability enables the IMD to satisfy minimum telemetry requirements in a manner that does not waste power, thus extending the IMD battery life.
摘要:
Embodiments of the invention include channel selection and mapping for medical device communication. The communication system can implement a two-stage listen before talk protocol to choose a channel for communication. The first stage samples the interference of each channel for a relatively short time and chooses the best signal. The second stage samples the channel selected by the first stage and samples it for a relatively longer time to confirm the channel selected by the first stage is the best channel for communication.
摘要:
An implantable medical device (IMD) includes a telemetry module to communicate with an external device according to a given protocol. To establish a communication session, the IMD will extend active periods of reception on a given channel when some confirmed data is received from the external device. In addition, once a session has been opened, the programmer transmits a short data set (or preamble) for each cycle which the IMD is set to receive. This data set indicates whether additional data will or will not be sent. If no additional data is to be sent during that cycle, then the IMD powers down the receiver for that cycle.