摘要:
Apparatus and methods are provided for quantitative detection of mercury vapor in gas samples using a film of nanoparticles. The localized surface plasmon resonance (LSPR) of an amalgam nanoparticle is sensitive to adsorbed mercury mass. The equilibrium mass of mercury on a gold nanoparticle is a function of the surrounding vapor concentration and the temperature of the gold. A device that introduces a temperature-controlled gold nanoparticle film to a controlled flow of sample gas responds predictably to a given mercury vapor concentration when optically probed in situ. Controlling the temperature of the film allows for control of adsorption and desorption rates. Equilibrium plasmonic mercury detection, described herein, removes the cycling necessary for many gold-based mercury analyses. Methods are given for the operation and analysis of the temperature-stabilized gold nanoparticle mercury sensor. The disclosed mercury-detection apparatus and methods find use in a variety of applications, including, for example, mercury detecting applications.
摘要:
Apparatus and methods are provided for quantitative detection of mercury vapor in gas samples using a film of nanoparticles. The localized surface plasmon resonance (LSPR) of an amalgam nanoparticle is sensitive to adsorbed mercury mass. The equilibrium mass of mercury on a gold nanoparticle is a function of the surrounding vapor concentration and the temperature of the gold. A device that introduces a temperature-controlled gold nanoparticle film to a controlled flow of sample gas responds predictably to a given mercury vapor concentration when optically probed in situ. Controlling the temperature of the film allows for control of adsorption and desorption rates. Equilibrium plasmonic mercury detection, described herein, removes the cycling necessary for many gold-based mercury analyses. Methods are given for the operation and analysis of the temperature-stabilized gold nanoparticle mercury sensor. The disclosed mercury-detection apparatus and methods find use in a variety of applications, including, for example, mercury detecting applications.
摘要:
Apparatus and methods are provided for quantitative detection of mercury vapor in gas samples using a film of nanoparticles. The localized surface plasmon resonance (LSPR) of an amalgam nanoparticle is sensitive to adsorbed mercury mass. The equilibrium mass of mercury on a gold nanoparticle is a function of the surrounding vapor concentration and the temperature of the gold. A device that introduces a temperature-controlled gold nanoparticle film to a controlled flow of sample gas responds predictably to a given mercury vapor concentration when optically probed in situ. Controlling the temperature of the film allows for control of adsorption and desorption rates. Equilibrium plasmonic mercury detection, described herein, removes the cycling necessary for many gold-based mercury analyses. Methods are given for the operation and analysis of the temperature-stabilized gold nanoparticle mercury sensor. The disclosed mercury-detection apparatus and methods find use in a variety of applications, including, for example, mercury detecting applications.
摘要:
Apparatus and methods are provided for quantitative detection of mercury vapor in gas samples using a film of nanoparticles. The localized surface plasmon resonance (LSPR) of an amalgam nanoparticle is sensitive to adsorbed mercury mass. The equilibrium mass of mercury on a gold nanoparticle is a function of the surrounding vapor concentration and the temperature of the gold. A device that introduces a temperature-controlled gold nanoparticle film to a controlled flow of sample gas responds predictably to a given mercury vapor concentration when optically probed in situ. Controlling the temperature of the film allows for control of adsorption and desorption rates. Equilibrium plasmonic mercury detection, described herein, removes the cycling necessary for many gold-based mercury analyses. Methods are given for the operation and analysis of the temperature-stabilized gold nanoparticle mercury sensor. The disclosed mercury-detection apparatus and methods find use in a variety of applications, including, for example, mercury detecting applications.
摘要:
Embodiments are disclosed of an analyte detection system configured as an attachment to a smartwatch. The detection-system hardware can comprise, for example, a plasmonic sensor configured to attach to, and align with the smartwatch's optics (e.g., LED and detector).
摘要:
Apparatus and methods are provided for quantitative detection of mercury vapor in gas samples using a film of nanoparticles. The localized surface plasmon resonance (LSPR) of an amalgam nanoparticle is sensitive to adsorbed mercury mass. The equilibrium mass of mercury on a gold nanoparticle is a function of the surrounding vapor concentration and the temperature of the gold. A device that introduces a temperature-controlled gold nanoparticle film to a controlled flow of sample gas responds predictably to a given mercury vapor concentration when optically probed in situ. Controlling the temperature of the film allows for control of adsorption and desorption rates. Equilibrium plasmonic mercury detection, described herein, removes the cycling necessary for many gold-based mercury analyses. Methods are given for the operation and analysis of the temperature-stabilized gold nanoparticle mercury sensor. The disclosed mercury-detection apparatus and methods find use in a variety of applications, including, for example, mercury detecting applications.
摘要:
Apparatus and methods are provided for quantitative detection of mercury vapor in gas samples using a film of nanoparticles. The localized surface plasmon resonance (LSPR) of an amalgam nanoparticle is sensitive to adsorbed mercury mass. The equilibrium mass of mercury on a gold nanoparticle is a function of the surrounding vapor concentration and the temperature of the gold. A device that introduces a temperature-controlled gold nanoparticle film to a controlled flow of sample gas responds predictably to a given mercury vapor concentration when optically probed in situ. Controlling the temperature of the film allows for control of adsorption and desorption rates. Equilibrium plasmonic mercury detection, described herein, removes the cycling necessary for many gold-based mercury analyses. Methods are given for the operation and analysis of the temperature-stabilized gold nanoparticle mercury sensor. The disclosed mercury-detection apparatus and methods find use in a variety of applications, including, for example, mercury detecting applications.
摘要:
A tricycle type vehicle that uses a reciprocating crank system to drive the vehicle is shown. In this design, the operating parts of the vehicle are enclosed by a padded shell that has a soft removable cover. The padded shell ensures that a child has no access to the moving parts while the vehicle is in motion The soft removable covers have different designs, such as animals (horses, lions, etc.), dinosaurs, cartoon characters, or any popular style. The soft covers are also designed to be used a bedding for children, throw rugs or as large stuffed toys. The device also has fenders to prevent contact with the large rear wheels. Finally, sound effects can be added to further enhance the overall operating effect as a toy.
摘要:
A sighting assembly comprising a housing having a first portion and a second portion has mounted within the first portion thereof a laser rangefinder comprising a laser transceiver for transmitting a laser beam toward a target and for receiving a reflected laser beam from the target. The laser rangefinder is coupled to a display for indicating the distance to the target. Mounted within the second portion of the housing is a sight for viewing the target. The sighting assembly further includes at least one attachment on the housing for securing the assembly to a weapon.