摘要:
Processes are disclosed for production of value-added products from fluid admixtures of hydrocarbon compounds at least one of which is an aromatic hydrocarbon compound, by means of one or more devices using perm-selective polymeric membranes. More particularly, processes of the invention comprise separations using aromatic-selective polymeric materials comprising long-chain polymeric molecules in which recurring amide and imide linkages are part of the main polymer chain. Processes of the invention advantageously employ aromatic-selective membranes to separate an aromatic enriched stream from gaseous and/or liquid mixtures comprising one or more aromatic hydrocarbon compounds thereby producing a stream comprising the remaining compounds which may include alkenes and/or alkanes containing 3 or more carbon atoms, and/or alicyclic hydrocarbons. Processes of the invention are particularly useful for recovery of meta-xylene and para-xylene products from liquid mixtures even containing ethylbenzene as well as the three xylene isomers.
摘要:
Disclosed herein is a method of making xylene isomers. More specifically, the method includes contacting a C9 aromatics-comprising feed with a catalyst under conditions suitable for converting the feed to an intermediate product stream comprising xylene isomers, separating at least a portion of the xylene isomers from the intermediate product stream, and recycling to the feed the xylene isomers-lean intermediate product stream. Alternatively, the method of making xylene isomers includes contacting a feed comprising C9 aromatics and less than about 30 wt. % benzene, based on the total weight of the feed, with a non-sulfided, large-pore zeolite impregnated with a Group VIB metal oxide, under conditions suitable for converting the feed to a product stream comprising xylene isomers. The disclosed method is characterized by unexpectedly high ratios of xylene isomers to ethylbenzene, xylene isomers to C9 aromatics (e.g., methylethylbenzene), xylene isomers to C10 aromatics, trimethylbenzene to methylethylbenzene, benzene to ethylbenzene, in the product of the conversion, and the high conversion of C9 aromatics and methylethylbenzene.
摘要:
Disclosed herein are methods of making xylene isomers. The methods generally include contacting an aromatics-comprising feed with a non-sulfided catalyst under conditions suitable for converting the feed to a product comprising xylene isomers. The catalyst includes a support impregnated with a hydrogenation component. The support includes a macroporous binder and a sieve selected from the group consisting of a medium pore sieve, a large pore sieve, and mixtures thereof. The selection of the sieve will depend upon the size of the molecules in the feed, intermediate, and product that can be expected from the catalytic reactions. When the molecules are expected to be large, a large pore sieve should be used. In contrast, when the molecules are expected to be smaller, either a large pore sieve, a medium pore sieve, or a mixture thereof may be used. The macropores within the support have been found to be especially beneficial because they help to overcome diffusional limitations observed when utilizing highly-active catalysts lacking such macropores.
摘要:
A liquid crystal display device comprises: a layer of a chiral liquid crystal material disposed between first and second substrates; and means for applying a voltage across the liquid crystal layer. A first region of the liquid crystal layer is an active region for display and a second region of the liquid crystal layer is a nucleation region for generating a desired liquid crystal state in the first region when a voltage is applied across the liquid crystal layer. The ratio of the thickness d of the liquid crystal layer to the pitch p of the liquid crystal material has a first value (d/p)A in the first region of the liquid crystal layer and has a second value (d/p)N different from the first value in the second region of the liquid crystal layer. The value (d/p)N of the ratio of the thickness d of the liquid crystal layer to the pitch p of the liquid crystal material in the second region of the liquid crystal layer is selected such that, when no voltage is applied across the liquid crystal layer, the liquid crystal state stable in the second region of the liquid crystal layer is topologically equivalent to the desired liquid crystal state.