Abstract:
Disclosed is the solidification and chemical fixation of wastes using biogenetic primarily amorphous silica to the waste at ambient temperature and pressure in the presence of a strong alkali and sufficient water in the waste which converts the biogenetic silica into a soluble silicate and sufficient water to form the soluble silicate, and in the presence of a polyvalent metal ion in the waste which reacts with the formed soluble silicate to provide a cementitious product of the waste. In the event there is insufficient strong alkali or water present in the waste to convert the biogenetic amorphous silica to a soluble silicate, and insufficient polyvalent metal ion in the waste to harden and form a cementitious product, amounts of these components as necessary can be added along with the biogenetic silica to the waste. The resulting cementitious and chemically fixed waste can be left in place, for example to provide a land farm, or can be removed and broken up and used as a cover for land fills, various land applications, and farms, as well as other applications.
Abstract:
A method for treating liquid and semi-liquid wastes to render them fit for ultimate disposal, by first determining the ionic charge of the waste counter ions. An appropriate suspension of emulsified asphalt particles is then selected having an opposite particle charge to the ionic charge of the waste counter ions. The waste is then mixed with the selected suspension of emulsified asphalt particles at ambient temperature in an amount sufficient to react with the waste counter ions and coalesce into a hydrophobic mass.
Abstract:
A method of treating aqueous liquid and semi-liquid wastes to render them fit for ultimate disposal in a sedentary mass, by admixing with the waste a solidification agent, encapsulating the admixture before solidification in an elongate, pliable, tubular membrane, sealing the ends of the membrane, and allowing the admixture to set to a sedentary mass.
Abstract:
A method for treating aqueous liquid and semi-liquid wastes by solidification comprising the steps of mixing with the waste a dry water-reactive solidification agent comprising cement, a dry water absorbent material, and a powdered alkali metal silicate in a quantity sufficient to convert the mixture into a chemically and physically stable solid end product substantially insoluble in water and which contains no substantially free-standing water, and allowing the mixture to set to a sedentary mass. Additive agents such as surfactants, fixatives, waterproofing agents, coloring agents, and the like are also disclosed as assisting in the solidification reaction by reacting with certain constituents in the waste.
Abstract:
An aqueous solution of an alkali metal silicate and a silicate setting agent containing polyvalent metal ions is mixed with waste material to convert the mixture into a consolidated stable earth-like material substantially insoluble in water. The material is pulverized and mixed with polluted waste water, with the mixture being maintained long enough for the pulverized material to react with pollutants in the waste water to reduce or remove them, following which the suspended solids in the water are separated from it, leaving the water improved in quality; that is, water that is materially less contaminated than before treatment.
Abstract:
Disclosed is a commercial grade of soluble silicate solutions, clear homogenous and water white essentially free of unreacted silica, made by dissolving in a closed container biogenic silica, preferably rice hull ash, in a strong alkali solution, preferably sodium hydroxide in the presence of an agent, such as an active carbonaceous material, which prevents discoloration of the soluble silicates by absorbing and/or reacting with polyvalent metals, organic materials, and the like, in the biogenic silica as it dissolves in and reacts with the alkali solution. The invention takes advantage of the residue of such active carbonaceous material on the biogenic silica, such as rice hulls, left by commercial energy burning thereof which effectively prevents discoloration. A solid residue results from the method which is an active carbonaceous material including concentrated manganese from the biogenic silica, both of which are valuable commercial products.
Abstract:
Disclosed is a commercial grade of soluble silicate solutions, clear homogenous and water white essentially free of unreacted silica, made by dissolving in a closed container biogenetic silica, preferably rice hull ash, in a strong alkali solution, preferably sodium hydroxide in the presence of an agent, such as an active carbonaceous material, which prevents discoloration of the soluble silicates by absorbing and/or reacting with polyvalent metals, organic materials, and the like, in the biogenetic silica as it dissolves in and reacts with the alkali solution. The invention takes advantage of the residue of such active carbonaceous material on the biogenetic silica, such as rice hulls, left by commercial energy burning thereof which effectively prevents discoloration. A solid residue results from the method which is an active carbonaceous material including concentrated manganese from the biogenetic silica, both of which are valuable commercial products.
Abstract:
Disclosed is the solidification and chemical fixation of wastes using biogenetic primarily amorphous silica to the waste at ambient temperature and pressure in the presence of a strong alkali and sufficient water in the waste which converts the biogenetic silica into a soluble silicate and sufficient water to form the soluble silicate, and in the presence of a polyvalent metal ion in the waste which reacts with the formed soluble silicate to provide a cementitious product of the waste. In the event there is insufficient strong alkali or water present in the waste to convert the biogenetic amorphous silica to a soluble silicate, and insufficient polyvalent metal ion in the waste to harden and form a cementitious product, amounts of these components as necessary can be added along with the biogenetic silica to the waste. The resulting cementitious and chemically fixed waste can be left in place, for example to provide a land farm, or can be removed and broken up and used as a cover for land fills, various land applications, and farms, as well as other applications.
Abstract:
The organic chemical waste content of contaminated materials such as soils and debris is immobilized by mixing such wastes with an agent consisting of a mixture of particulate rubber and biogenic amorphous silica. Where the semi-volatile content of the waste is known to predominate a greater portion of particulate rubber is advantageous and where such waste is known to be entirely semi-volatile organic material such agent advantageously consists essentially or comprises particulate rubber. Conversely, where the organic content of such wastes is predominately volatile organic material a greater portion of biogenic amorphous silica should be employed and where such organic waste is known to be entirely volatile organic such additive is advantageously biogenic amorphous silica.
Abstract:
A method and apparatus for treating human waste by solidification. The method performed by the disclosed embodiment comprises receiving the waste in a toilet or receptacle, liquidizing the waste with a macerating pump, adding to the liquidized waste a solidification agent, mixing the liquidized waste and the solidification agent, and transferring the mixture of waste and solidification agent to a disposable container. The disposable container can be discarded through conventional solid waste handling procedures or discarded in sanitary landfills. The disclosed apparatus introduces a quantity of solidification chemicals into a liquidized waste provided from a holding tank of a recirculating toilet, and directs the mixture of waste and solidification agent into the disposable container.