摘要:
A system generates and arranges animation sequences of articulated characs for review and selection by a user. Motion of articulated characters is based upon input parameters, such as torques at joints of the character. The system can be used to select appropriate parameters to obtain desirable motion of the articulated characters. The system generates a set of input vectors containing parameters of the motion. The input parameters are then processed to determine animation sequences and corresponding output vectors. The output vectors include characteristics of the motion. The input vectors are selected to provide a dispersed set of output vectors. A large number of random input vectors can be generated and then culled to leave a dispersed set of output vectors. Alternatively, a set of randomly generated input vectors of a predetermined size are randomly perturbed, to further disperse the output vectors. The system includes an interface for representing the output vectors and animation sequences in a manner which is easily reviewable by a user. The output vectors are displayed so that positions represent distances between the output vectors. The user can then select specific output vectors so that the corresponding animation sequence is displayed.
摘要:
There is provided a system and method for database driven action capture. By utilizing low cost, lightweight MEMS devices such as accelerometers, a user friendly, wearable, and cost effective system for motion capture is provided, which relies on a motion database of previously recorded motions to reconstruct the actions of a user. By relying on the motion database, calculation errors such as integration drift are avoided and the need for complex and expensive positional compensation hardware is avoided. The accelerometers may be implemented in an E-textile embodiment using inexpensive off-the-shelf components. In some embodiments, compression techniques may be used to accelerate linear best match searching against the motion database. Adjacent selected motions may also be blended together for improved reconstruction results and visual rendering quality. Various perceivable effects may be triggered in response to the reconstructed motion, such as animating a 3D avatar, playing sounds, or operating a motor.
摘要:
A method for a computer system includes receiving global positional data associated with a set of markers from a plurality of markers associated with a surface of an object at one or more time instances, wherein global positional data associated with a first marker from the plurality of markers is absent from a first time instance, using local statistical methods to determine global positional data associated with the first marker at the first time instance in response to the global positional data associated with the set of markers at the one or more time instances, and determining a model of the object in response to the global positional data associated with the set of markers and the global positional data associated with the first marker.
摘要:
There is provided a system and method for database driven action capture. By utilizing low cost, lightweight MEMS devices such as accelerometers, a user friendly, wearable, and cost effective system for motion capture is provided, which relies on a motion database of previously recorded motions to reconstruct the actions of a user. By relying on the motion database, calculation errors such as integration drift are avoided and the need for complex and expensive positional compensation hardware is avoided. The accelerometers may be implemented in an E-textile embodiment using inexpensive off-the-shelf components. In some embodiments, compression techniques may be used to accelerate linear best match searching against the motion database. Adjacent selected motions may also be blended together for improved reconstruction results and visual rendering quality. Various perceivable effects may be triggered in response to the reconstructed motion, such as animating a 3D avatar, playing sounds, or operating a motor.
摘要:
Techniques are disclosed for optimizing and maintaining cyclic biped locomotion of a robot on an object. The approach includes simulating trajectories of the robot in contact with the object. During each trajectory, the robot maintains balance on the object, while using the object for locomotion. The approach further includes determining, based on the simulated trajectories, an initial state of a cyclic gait of the robot such that the simulated trajectory of the robot starting from the initial state substantially returns to the initial state at an end of one cycle of the cyclic gait. In addition, the approach includes sending joint angles and joint velocities of the initial state to a set of joint controllers of the robot to cause a leg of the robot to achieve the initial state so the robot moves through one or more cycles of the cyclic gait.