摘要:
A comprehensive system to enhance the aesthetic quality of the photographs captured by mobile consumers provides on-site composition and aesthetics feedback through retrieved examples. Composition feedback is qualitative in nature and responds by retrieving highly aesthetic exemplar images from the corpus which are similar in content and composition to the snapshot. Color combination feedback provides confidence on the snapshot to contain good color combinations. Overall aesthetics feedback predicts the aesthetic ratings for both color and monochromatic images. An algorithm is used to provide ratings for color images, while new features and a new model are developed to treat monochromatic images. This system was designed keeping the next generation photography needs in mind and is the first of its kind. The feedback rendered is guiding and intuitive in nature. It is computed in situ while requiring minimal input from the user.
摘要:
A principled, probabilistic approach to meta-learning acts as a go-between for a ‘black-box’ image annotation system and its users. Inspired by inductive transfer, the approach harnesses available information, including the black-box model's performance, the image representations, and a semantic lexicon ontology. Being computationally ‘lightweight.’ the meta-learner efficiently re-trains over time, to improve and/or adapt to changes. The black-box annotation model is not required to be re-trained, allowing computationally intensive algorithms to be used. Both batch and online annotation settings are accommodated. A “tagging over time” approach produces progressively better annotation, significantly outperforming the black-box as well as the static form of the meta-learner, on real-world data.
摘要:
The aesthetic quality of a picture is automatically inferred using visual content as a machine learning problem using, for example, a peer-rated, on-line photo sharing Website as data source. Certain visual features of images are extracted based on the intuition that they can discriminate between aesthetically pleasing and displeasing images. A one-dimensional support vector machine is used to identify features that have noticeable correlation with the community-based aesthetics ratings. Automated classifiers are constructed using the support vector machines and classification trees, with a simple feature selection heuristic being applied to eliminate irrelevant features. Linear regression on polynomial terms of the features is also applied to infer numerical aesthetics ratings.
摘要:
A computerized annotation method achieves real-time operation and better optimization properties while preserving the architectural advantages of the generative modeling approach. A novel clustering algorithm for objects is represented by discrete distributions, or bags of weighted vectors, thereby minimizing the total within cluster distance, a criterion used by the k-means algorithm. A new mixture modeling method, the hypothetical local mapping (HLM) method, is used to efficiently build a probability measure on the space of discrete distributions. Thus, in accord with the invention every image is characterized by a statistical distribution. The profiling model specifies a probability law for distributions directly.
摘要:
In a system and method for the generation of attack-resistant, user-friendly, image-based CAPTCHAs (Completely Automated Public test to Tell Computers and Humans Apart), controlled distortions are applied to randomly chosen images and presented to a user for annotation from a given list of words. An image is presented that contains multiple connected but independent images with the borders between them distorted or otherwise visually obfuscated in a way that a computer cannot distinguish the borders and a user selects near the center of one of the images. The distortions are performed in a way that satisfies the incongruous requirements of low perceptual degradation and high resistance to attack by content-based image retrieval systems. Word choices are carefully generated to avoid ambiguity as well as to avoid attacks based on the choices themselves.
摘要:
The aesthetic quality of a picture is automatically inferred using visual content as a machine learning problem using, for example, a peer-rated, on-line photo sharing Website as data source. Certain visual features of images are extracted based on the intuition that they can discriminate between aesthetically pleasing and displeasing images. A one-dimensional support vector machine is used to identify features that have noticeable correlation with the community-based aesthetics ratings. Automated classifiers are constructed using the support vector machines and classification trees, with a simple feature selection heuristic being applied to eliminate irrelevant features. Linear regression on polynomial terms of the features is also applied to infer numerical aesthetics ratings.
摘要:
A computerized annotation method achieves real-time operation and better optimization properties while preserving the architectural advantages of the generative modeling approach. A novel clustering algorithm for objects is represented by discrete distributions, or bags of weighted vectors, thereby minimizing the total within cluster distance, a criterion used by the k-means algorithm. A new mixture modeling method, the hypothetical local mapping (HLM) method, is used to efficiently build a probability measure on the space of discrete distributions. Thus, in accord with the invention every image is characterized by a statistical distribution. The profiling model specifies a probability law for distributions directly.
摘要:
The aesthetic quality of a picture is automatically inferred using visual content as a machine learning problem using, for example, a peer-rated, on-line photo sharing Website as data source. Certain visual features of images are extracted based on the intuition that they can discriminate between aesthetically pleasing and displeasing images. A one-dimensional support vector machine is used to identify features that have noticeable correlation with the community-based aesthetics ratings. Automated classifiers are constructed using the support vector machines and classification trees, with a simple feature selection heuristic being applied to eliminate irrelevant features. Linear regression on polynomial terms of the features is also applied to infer numerical aesthetics ratings.
摘要:
A comprehensive system to enhance the aesthetic quality of the photographs captured by mobile consumers provides on-site composition and aesthetics feedback through retrieved examples. Composition feedback is qualitative in nature and responds by retrieving highly aesthetic exemplar images from the corpus which are similar in content and composition to the snapshot. Color combination feedback provides confidence on the snapshot to contain good color combinations. Overall aesthetics feedback predicts the aesthetic ratings for both color and monochromatic images. An algorithm is used to provide ratings for color images, while new features and a new model are developed to treat monochromatic images. This system was designed keeping the next generation photography needs in mind and is the first of its kind. The feedback rendered is guiding and intuitive in nature. It is computed in situ while requiring minimal input from the user.
摘要:
A method and system for generating and searching a tree-structured index of window vectors that represent database sequences comprise a window vector generation module, a tree-structured index generation module, a query sequence partitioning module, and a retrieval component. The window vector generation module partitions a database sequence into a plurality of overlapping windows. Each window has a fixed length W comprising a fixed number of nucleotides, and the offset among windows is determined by a parameter &Dgr;. The window vector generation module then maps each database sequence window into a window vector. The database sequence window vector indicates the frequency of appearance of each k-tuple in the corresponding database sequence window. The tree-structured index generation module then generates a tree-structured index using the database sequence window vectors. The query sequence partitioning module partitions a query sequence into a plurality of windows and maps each query sequence window into a query sequence window vector. Each query sequence window vector is then compared against the tree-structured index to locate the database sequences that are similar to the query sequence. The list of database sequences that are similar to the query sequence is then returned as the result of the search.