Abstract:
A method for automatically selecting thematically representative music is disclosed. A processor is used for using a theme-related keyword to search a keyword-indexed video repository to retrieve videos associated with the theme-related keyword; analyzing the retrieved videos to select videos with music; and extracting music tracks and features from the selected videos. The method further includes selecting representative music related to the theme from the extracted music tracks using the extracted features; and storing the selected representative music in a processor accessible memory.
Abstract:
A method for viewing a collection of images or videos, includes analyzing the collection to determine properties of the images or videos and using the determined properties to produce icons corresponding to such properties; providing a time-varying display of the images or videos in the collection following an ordering of the images or videos in the collection and at least one of the corresponding icons; receiving a user selection of an icon; and changing the display of the images or videos in the collection following a reordering of the images or videos in the collection in response to the user selection.
Abstract:
Generating a tag layout from a set of tags and an ordering of the set of tags, wherein each tag includes a text label and a size for the text label, is disclosed. The system includes a processor accessible memory for receiving an ordered set of tags, each tag including a text label and a size for the text label, and at least one closed shape corresponding to a space for the tag layout. The system further includes a processor for generating the tag layout by computing a scale factor for either the closed shape or the size of the text labels in the set of tags such that all the tags in the set of tags fit within the closed shape, and the processor stores the generated tag layout in the memory.
Abstract:
A method of recognizing an event depicted in an image from the image and a location information associated with the image is disclosed. The method includes acquiring the image and its associated location information; using the location information to acquire an aerial image(s) correlated to the location information; identifying the event using both the image and the acquired aerial image(s); and storing the event in association with the image for subsequent use.
Abstract:
A method of computing at least one photogenic route from a starting location to a destination location, including; computing photogenic values for images in a large collection representing a geographic region that includes the starting location and the destination location; computing a photogenic index for each route segment based on computed photogenic values of images taken along the route segment; computing at least one photogenic route from the starting location to the destination location and presenting the route(s) to a user
Abstract:
Generating a tag layout from a set of tags and an ordering of the set of tags, wherein each tag includes a text label and a size for the text label, is disclosed. The system includes a processor accessible memory for receiving an ordered set of tags, each tag including a text label and a size for the text label, and at least one closed shape corresponding to a space for the tag layout. The system further includes a processor for generating the tag layout by computing a scale factor for either the closed shape or the size of the text labels in the set of tags such that all the tags in the set of tags fit within the closed shape, and the processor stores the generated tag layout in the memory.
Abstract:
A method of recognizing an event depicted in an image from the image and a location information associated with the image is disclosed. The method includes acquiring the image and its associated location information; using the location information to acquire an aerial image(s) correlated to the location information; identifying the event using both the image and the acquired aerial image(s); and storing the event in association with the image for subsequent use.
Abstract:
A method of determining the geographic location of a hardcopy medium having an image side and a non-image side, includes scanning a hardcopy medium to produce a scanned digital image; scanning the non-image side of the hardcopy medium; detecting a location feature from the scan of the non-image side of the hardcopy medium; using the location feature to determine the geographic location of the scanned digital image; and storing the determined geographic location of the scanned digital image.
Abstract:
Computing a scale factor to insert a first set of shapes into a second set of shapes to form a combined image includes receiving the two sets of shapes, using a processor to convert the first set of shapes into a set of rectangles and the second set of shapes into a set of intervals and computing the scale factor for either the set of intervals or the set of rectangles to generate the combined image by iteratively inserting the set of rectangles into the set of intervals and updating the scale factor in response to a residual area or an overflow area until all the rectangles in the set of rectangles have been inserted into the set of intervals and the residual area in the set of intervals is below a threshold, and storing the combined image in memory.
Abstract:
A method of computing at least one photogenic route from a starting location to a destination location, including; computing photogenic values for images in a large collection representing a geographic region that includes the starting location and the destination location; computing a photogenic index for each route segment based on computed photogenic values of images taken along the route segment; computing at least one photogenic route from the starting location to the destination location and presenting the route(s) to a user.