摘要:
A two-stage power converter that dynamically adjusts to output current requirements includes a first stage regulator that provides power to a second stage regulator. The first stage can be a buck converter, and the second stage can be a multiple-phase buck converter. The output voltage of the first stage (intermediate bus voltage Vbus) is varied according to the load current to optimize conversion efficiency. To provide maximum efficiency, the Vbus voltage is increased as load current increases. The Vbus voltage provided by the first stage can be varied by duty cycle or operating frequency control. In another embodiment, the switching frequency of the second stage is varied as output current changes so that output current ripple is held constant. In an embodiment employing a multiple-phase buck converter in the second stage, the number of operating phases are varied as output current changes.
摘要:
Alteration of voltage input to a voltage regulator output stage from a Vbus regulator stage in a two-stage voltage regulator provides optimal Vbus voltage placement for a wide range of current loads to increase voltage regulator efficiency and is particularly suited to CPUs having power-saving sleep modes of operation. An optimal voltage is selected or developed in response to information concerning operational mode or current consumption of the powered device. As a perfecting feature of one embodiment of the invention in which a discrete Vbus voltage is selected based on operational mode, the selected voltage is adjusted to further optimize the matching of the Vbus voltage placement to the load and provides a continuous range of voltages. In a second embodiment the entire Vbus positioning function is performed in response to current load information. A feed-forward arrangement is provided to avoid transient spikes as the Vbus voltage placement is altered.
摘要:
A voltage converter uses a component such as a JFET or four-terminal power MOSFET having no body diode and exhibiting no body diode conduction characteristic as a synchronous rectifier to reduce switching losses and body diode conduction losses and to support high frequency switching so that use of smaller components and higher current densities can be achieved. These effects are enhanced by a self-driven circuit utilizing positive feedback to enhance switching speed and reduce switching losses which increase with switching frequency.
摘要:
A voltage converter provides a desired voltage droop with load while avoiding output current sensing and active control/feedback circuits and avoiding excessive power dissipation from passive components by placing a sensing resistor in the low current, switched input circuit of the voltage converter. Therefore, the resistor conducts only when a switch controlling voltage conversion is conductive, generally at very low duty cycle and low current.
摘要:
A multiple phase buck converter or boost converter, or buck-boost converter has an inductor in each phase. A magnetic core with a unique woven topology provides inverse coupling between the inductors. The inductors can comprise straight conductors since the magnetic core has the woven topology wrapped around each inductor. The inductors have a reduced electrical resistance since they are straight and do not loop around the magnetic core. The reduced electrical resistance increases energy efficiency and improves transient response of the circuit. The magnetic core can comprise top and bottom portions that are magnetically connected. The inductors can comprise straight circuit board traces and the circuit board can have holes to accommodate the magnetic core.
摘要:
Power converters having reduced body diode conduction loss, reduced reverse recovery loss and lower switching noise, among other benefits, have a resonant capacitor Cr connected across an unfiltered output. The resonant capacitor Cr resonates with the leakage inductance Lk of the transformer. The resonant capacitor and leakage inductance are selected such that ½ a LC resonance period is equal to an ON time of each secondary switch S1 S2. The resonance provides zero current switching for secondary switches S1 S2, eliminates zero body diode conduction during dead times, and eliminates reverse recovery losses in the secondary switches. The present invention is applicable to many different circuit topologies such as full bridge, active clamp forward, push-pull forward, and center-tap secondary. The present converters provide high energy conversion efficiency and high frequency operation.
摘要翻译:具有降低的体二极管导通损耗,降低的反向恢复损耗和较低开关噪声以及其他优点的功率转换器具有连接在未滤波输出端的谐振电容器Cr。 谐振电容器Cr与变压器的漏电感Lk共振。 选择谐振电容器和漏电感,使得LC谐振周期的1/2相当于每个次级开关S 1 S 2的导通时间。谐振为次级开关S 1 S 2提供零电流开关,消除零体二极管导通 并且消除了次级开关中的反向恢复损耗。 本发明可应用于许多不同的电路拓扑,例如全桥,有源钳前进,推挽前进和中心抽头次级。 本转换器提供高能量转换效率和高频操作。
摘要:
An active linear regulator circuit in parallel with a filter capacitor of a switching voltage regulator injects current to a load only when the switching regulator and capacitor cannot supply adequate current to follow high frequency load transients in a manner which is compatible with adaptive voltage positioning (AVP) requirements. control of current injection and determination of the insufficiency of current from the switching regulator and capacitors is achieved by impedance matching of the linear regulator to the switching regulator. The linear regulator thus operates at relatively low current and duty cycle to limit power dissipation therein. By matching impedances and increasing the bandwidth of the switching regulator, filter capacitor requirements can be reduced to the point of being met entirely by packaging and/or on-die capacitors which may be placed close to or at the point of load to reduce parasitic inductance, as can the linear regulator.
摘要:
A multiple phase buck converter or boost converter, or buck-boost converter has an inductor in each phase. The inductors are inversely coupled. In a first embodiment, the converter includes a toroidal magnetic core with inductors extending under and over opposite sides of the toroidal magnetic core. The coupled inductors are thereby inversely coupled and have a relatively low ohmic resistance. In a second embodiment, the converter comprises a ladder-shaped magnetic core (i.e. having parallel sides, and connecting rungs). In this case, the inductors extend under the sides, and over the rungs. Each inductor is disposed over a separate rung. The ladder-shaped magnetic core is preferably disposed flat on a circuit board. Inverse coupling and low ohmic resistance are also provided in the second embodiment having the ladder structure.
摘要:
Power converters having reduced body diode conduction loss, reduced reverse recovery loss and lower switching noise, among other benefits, have a resonant capacitor Cr connected across an unfiltered output. The resonant capacitor Cr resonates with the leakage inductance Lk of the transformer. The resonant capacitor and leakage inductance are selected such that ½ a LC resonance period is equal to an ON time of each secondary switch S1 S2. The resonance provides zero current switching for secondary switches S1 S2, eliminates zero body diode conduction during dead times, and eliminates reverse recovery losses in the secondary switches. The present invention is applicable to many different circuit topologies such as full bridge, active clamp forward, push-pull forward, and center-tap secondary. The present converters provide high energy conversion efficiency and high frequency operation.
摘要翻译:具有降低的体二极管导通损耗,降低的反向恢复损耗和较低开关噪声以及其他优点的功率转换器具有连接在未滤波输出端的谐振电容器Cr。 谐振电容器Cr与变压器的漏电感Lk共振。 谐振电容器和漏电感被选择为使得LC共振周期的1/2相当于每个次级开关S 1 S 2的导通时间。 谐振为次级开关S 1 S 2提供零电流开关,在死区时间消除零体二极管导通,并消除次级开关中的反向恢复损耗。 本发明可应用于许多不同的电路拓扑,例如全桥,有源钳前进,推挽前进和中心抽头次级。 本转换器提供高能量转换效率和高频操作。
摘要:
A method and system of establishing communications between at least two independent software modules in a safety critical system, such as a medical system, is provided. The design comprises providing an exclusive Bluetooth connection between at least two wireless devices. A master wireless device is configured with Bluetooth master device functionality and a slave wireless device is configured with Bluetooth slave device functionality. The wireless devices are employed in performing procedures in a safety critical environment. The method further comprises acquiring a stored unique address from the slave wireless device over the Bluetooth connection, comparing the stored unique address to a master wireless device unique address available at the master wireless device, and exclusively pairing the master wireless device and the slave wireless device when the unique address acquired from the slave wireless device is found to identically match the master wireless device unique address.