Creating home pages based on user-selected information of web pages
    1.
    发明授权
    Creating home pages based on user-selected information of web pages 有权
    根据用户选择的网页信息创建主页

    公开(公告)号:US07594013B2

    公开(公告)日:2009-09-22

    申请号:US11136029

    申请日:2005-05-24

    IPC分类号: G06F15/173

    CPC分类号: G06F17/3089

    摘要: A method of creating a personal home page containing information of interest assembled from various web sites. The method includes the partitioning of web pages into web blocks. Users may collect various web blocks from different web pages and utilize those web blocks to define the dynamic personal homepage. In addition, the web blocks may be tracked to update content in the personal home page based on corresponding changes in the original web page.

    摘要翻译: 一种创建个人主页的方法,该个人主页包含从各种网站组装的感兴趣的信息。 该方法包括将网页划分成网页块。 用户可以从不同的网页收集各种网页块,并利用这些网页块定义动态个人主页。 此外,可以基于原始网页中的相应变化来跟踪网页块以更新个人主页中的内容。

    Dynamic personal homepage: tracing web block
    3.
    发明申请
    Dynamic personal homepage: tracing web block 有权
    动态个人主页:跟踪网页块

    公开(公告)号:US20060271834A1

    公开(公告)日:2006-11-30

    申请号:US11136029

    申请日:2005-05-24

    IPC分类号: G06F17/00

    CPC分类号: G06F17/3089

    摘要: The invention provides a method of creating a personal home page containing information of interest assembled from various web sites. The method includes the partitioning of web pages into web blocks. Users may collect various web blocks from different web pages and utilize those web blocks to define the dynamic personal homepage. In addition, the web blocks may be tracked to update content in the personal home page based on corresponding changes in the original web page.

    摘要翻译: 本发明提供了一种创建包含从各种网站组装的感兴趣的信息的个人主页的方法。 该方法包括将网页划分成网页块。 用户可以从不同的网页收集各种网页块,并利用这些网页块定义动态个人主页。 此外,可以基于原始网页中的相应变化来跟踪网页块以更新个人主页中的内容。

    Scalable probabilistic latent semantic analysis
    4.
    发明授权
    Scalable probabilistic latent semantic analysis 有权
    可扩展概率潜在语义分析

    公开(公告)号:US07844449B2

    公开(公告)日:2010-11-30

    申请号:US11392763

    申请日:2006-03-30

    IPC分类号: G06F17/27

    CPC分类号: G06F17/2785

    摘要: A scalable two-pass scalable probabilistic latent semantic analysis (PLSA) methodology is disclosed that may perform more efficiently, and in some cases more accurately, than traditional PLSA, especially where large and/or sparse data sets are provided for analysis. The improved methodology can greatly reduce the storage and/or computational costs of training a PLSA model. In the first pass of the two-pass methodology, objects are clustered into groups, and PLSA is performed on the groups instead of the original individual objects. In the second pass, the conditional probability of a latent class, given an object, is obtained. This may be done by extending the training results of the first pass. During the second pass, the most likely latent classes for each object are identified.

    摘要翻译: 公开了一种可扩展的双向可伸缩概率潜在语义分析(PLSA)方法,其可以比传统的PLSA更有效地执行,在某些情况下可以更准确地执行,特别是在提供大型和/或稀疏数据集用于分析的情况下。 改进的方法可以大大降低培训PLSA模型的存储和/或计算成本。 在双路方法的第一遍中,对象被聚集成组,并且PLSA在组而不是原始的单个对象上执行。 在第二遍中,获得给定对象的潜在类的条件概率。 这可以通过扩展第一遍的训练结果来完成。 在第二遍期间,识别每个对象最可能的潜在类。

    Scalable probabilistic latent semantic analysis
    6.
    发明申请
    Scalable probabilistic latent semantic analysis 有权
    可扩展概率潜在语义分析

    公开(公告)号:US20070239431A1

    公开(公告)日:2007-10-11

    申请号:US11392763

    申请日:2006-03-30

    IPC分类号: G06F17/27

    CPC分类号: G06F17/2785

    摘要: A scalable two-pass scalable probabilistic latent semantic analysis (PLSA) methodology is disclosed that may perform more efficiently, and in some cases more accurately, than traditional PLSA, especially where large and/or sparse data sets are provided for analysis. The improved methodology can greatly reduce the storage and/or computational costs of training a PLSA model. In the first pass of the two-pass methodology, objects are clustered into groups, and PLSA is performed on the groups instead of the original individual objects. In the second pass, the conditional probability of a latent class, given an object, is obtained. This may be done by extending the training results of the first pass. During the second pass, the most likely latent classes for each object are identified.

    摘要翻译: 公开了一种可扩展的双向可伸缩概率潜在语义分析(PLSA)方法,其可以比传统的PLSA更有效地执行,在某些情况下可以更准确地执行,特别是在提供大数据集和/或稀疏数据集用于分析的情况下。 改进的方法可以大大降低培训PLSA模型的存储和/或计算成本。 在双路方法的第一遍中,对象被聚集成组,并且PLSA在组而不是原始的单个对象上执行。 在第二遍中,获得给定对象的潜在类的条件概率。 这可以通过扩展第一遍的训练结果来完成。 在第二遍期间,识别每个对象最可能的潜在类。

    Collaborative filtering using cluster-based smoothing
    7.
    发明申请
    Collaborative filtering using cluster-based smoothing 审中-公开
    使用基于群集的平滑的协同过滤

    公开(公告)号:US20070239553A1

    公开(公告)日:2007-10-11

    申请号:US11377130

    申请日:2006-03-16

    IPC分类号: G06Q30/00

    摘要: In an embodiment, a method of predicting an active user's rating for an item is disclosed. A database of users may be sorted into clusters. The data associated with the users in each cluster may be smoothed to filling in ratings for items that the users have not personally rated. An active user may then be compared to a set of users, where the set may be all or some portion of the database, to determine the K users that are most similar to the active user. The ratings of the K users regarding the item may be used to predict the active user's rating for the item. In an embodiment, the rating of each of the K users is assigned a confidence value associated with whether the user personally rated the item or if the rating was generated by the data smoothing process.

    摘要翻译: 在一个实施例中,公开了一种用于预测项目的活跃用户评级的方法。 可以将用户的数据库分类为群集。 可以平滑与每个群集中的用户相关联的数据,以填充用户未被评估的项目的评级。 然后可以将活动用户与一组用户进行比较,其中该集合可以是数据库的全部或部分,以确定与活动用户最相似的K个用户。 关于该项目的K个用户的评级可以用于预测该项目的活动用户的评级。 在一个实施例中,每个K个用户的评级被分配与用户个人评价该项目相关联的置信度值,或者如果该评级是由数据平滑处理产生的。

    INTERACTIVELY CRAWLING DATA RECORDS ON WEB PAGES
    8.
    发明申请
    INTERACTIVELY CRAWLING DATA RECORDS ON WEB PAGES 失效
    互联网络数据记录在网页上

    公开(公告)号:US20080016087A1

    公开(公告)日:2008-01-17

    申请号:US11456753

    申请日:2006-07-11

    IPC分类号: G06F7/00

    摘要: The invention provides a method of interactively crawling data records on a web page. Users may select various data records of interest on a web page to generate templates to search for similar data items on the same web page or on different web pages. A tree matching algorithm may be used to compare and extract data matching the generated template.

    摘要翻译: 本发明提供了一种在网页上交互地爬行数据记录的方法。 用户可以在网页上选择感兴趣的各种数据记录,以生成在同一网页或不同网页上搜索类似数据项的模板。 可以使用树匹配算法来比较和提取与生成的模板匹配的数据。