Boosting algorithm for ranking model adaptation
    1.
    发明授权
    Boosting algorithm for ranking model adaptation 有权
    用于排名模型适应的升压算法

    公开(公告)号:US08255412B2

    公开(公告)日:2012-08-28

    申请号:US12337623

    申请日:2008-12-17

    IPC分类号: G06F7/00 G06F17/30

    CPC分类号: G06F17/3053

    摘要: Model adaptation may be performed to take a general model trained with a set of training data (possibly large), and adapt the model using a set of domain-specific training data (possibly small). The parameters, structure, or configuration of a model trained in one domain (called the background domain) may be adapted to a different domain (called the adaptation domain), for which there may be a limited amount of training data. The adaption may be performed using the Boosting Algorithm to select an optimal basis function that optimizes a measure of error of the model as it is being iteratively refined, i.e., adapted.

    摘要翻译: 可以执行模型适配以采用用一组训练数据(可能较大)训练的通用模型,并且使用一组特定领域的训练数据(可能小)来适配模型。 在一个域(称为背景域)中训练的模型的参数,结构或配置可以适应于可能存在有限量的训练数据的不同域(称为适配域)。 可以使用升压算法来执行自适应,以选择最优基函数,该优化基函数优化模型的误差量度,因为其被迭代地改进,即适应。

    BOOSTING ALGORITHM FOR RANKING MODEL ADAPTATION
    2.
    发明申请
    BOOSTING ALGORITHM FOR RANKING MODEL ADAPTATION 有权
    用于排序模型适应的增强算法

    公开(公告)号:US20100153315A1

    公开(公告)日:2010-06-17

    申请号:US12337623

    申请日:2008-12-17

    IPC分类号: G06F15/18 G06F17/30

    CPC分类号: G06F17/3053

    摘要: Model adaptation may be performed to take a general model trained with a set of training data (possibly large), and adapt the model using a set of domain-specific training data (possibly small). The parameters, structure, or configuration of a model trained in one domain (called the background domain) may be adapted to a different domain (called the adaptation domain), for which there may be a limited amount of training data. The adaption may be performed using the Boosting Algorithm to select an optimal basis function that optimizes a measure of error of the model as it is being iteratively refined, i.e., adapted.

    摘要翻译: 可以执行模型适配以采用用一组训练数据(可能较大)训练的通用模型,并且使用一组特定领域的训练数据(可能小)来适配模型。 在一个域(称为背景域)中训练的模型的参数,结构或配置可以适应于可能存在有限量的训练数据的不同域(称为适配域)。 可以使用升压算法来执行自适应,以选择最优基函数,该优化基函数优化模型的误差量度,因为其被迭代地改进,即适应。

    METHOD AND SYSTEM FOR OPTIMAL DECOMPOSITION OF SINGLE-QUBIT QUANTUM CIRCUITS USING STANDARD QUANTUM GATES
    3.
    发明申请
    METHOD AND SYSTEM FOR OPTIMAL DECOMPOSITION OF SINGLE-QUBIT QUANTUM CIRCUITS USING STANDARD QUANTUM GATES 审中-公开
    使用标准量子门的单个QUBIT量子电路的最佳分解方法和系统

    公开(公告)号:US20140026107A1

    公开(公告)日:2014-01-23

    申请号:US13552641

    申请日:2012-07-19

    IPC分类号: G06F17/50

    摘要: The current application is directed to methods and systems which produce a design for an optimal approximation of a target single-qubit quantum operation comprising a representation of a quantum-circuit generated from a discrete, quantum-gate basis. The discrete quantum-gate basis comprises standard, implementable quantum gates. The methods and systems employ a database of canonical-form quantum circuits, an efficiently organized canonical-form quantum-circuit, and efficient searching to identify a minimum-cost design for decomposing and approximating an input target quantum operation.

    摘要翻译: 目前的应用涉及产生用于目标单量子比特操作的最佳近似的设计的方法和系统,其包括从离散的量子门基础产生的量子电路的表示。 离散量子门基础包括标准的可实现的量子门。 这些方法和系统采用规范形式的量子电路数据库,有效组织的规范形式的量子电路,以及有效的搜索,以识别用于分解和近似输入目标量子操作的最小成本设计。

    METHOD AND SYSTEM FOR DECOMPOSING SINGLE-QUBIT QUANTUM CIRCUITS INTO A DISCRETE BASIS
    5.
    发明申请
    METHOD AND SYSTEM FOR DECOMPOSING SINGLE-QUBIT QUANTUM CIRCUITS INTO A DISCRETE BASIS 有权
    将单个QUBIT量子电路分解成离散基础的方法和系统

    公开(公告)号:US20140026108A1

    公开(公告)日:2014-01-23

    申请号:US13552639

    申请日:2012-07-19

    IPC分类号: G06F17/50

    摘要: The current application is directed to methods and systems which transform a given single-qubit quantum circuit expressed in a first quantum-gate basis into a quantum-circuit expressed in a second, discrete, quantum-gate basis. The discrete quantum-gate basis comprises standard, implementable quantum gates. The given single-qubit quantum circuit is expressed as a normal representation. The normal representation is generally compressed, in length, with respect to equivalent non-normalized representations. The method and systems additionally provide a mapping from normal representations to canonical-form representations, which are generally further compressed, in length, with respect to normal representations. The normal and canonical-form representations can be used to implement methods and systems for search-based quantum-circuit design. Neither this section nor the sections which follow are intended to either limit the scope of the claims which follow or define the scope of those claims.

    摘要翻译: 目前的应用涉及将以第一量子门基表达的给定单量子电路变换为以第二离散量子门为基础的量子电路的方法和系统。 离散量子门基础包括标准的可实现的量子门。 给定的单量子比特量子电路表示为正态表示。 正常表示通常在长度方面相对于等效的非归一化表示进行压缩。 方法和系统另外提供从正常表示到规范形式表示的映射,其通常在长度方面相对于正常表示被进一步压缩。 正常和规范形式的表示可以用于实现基于搜索的量子电路设计的方法和系统。 本节或以下各节均不意图限制以下权利要求的范围或界定这些权利要求的范围。

    Multi-level search
    6.
    发明申请
    Multi-level search 有权
    多级搜索

    公开(公告)号:US20080313147A1

    公开(公告)日:2008-12-18

    申请号:US11818088

    申请日:2007-06-13

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30657

    摘要: A computer-implementable method and system for performing a multi-level search. The method includes performing a primary search that involves executing a query submitted by a user, and returning primary search results (a list of documents, for example). The method further includes automatically performing a secondary search. The secondary search involves identifying at least one third-party source of information based on the query, and automatically assessing a semantic interpretation of the query. The secondary search utilizes the identified at least one third-party source of information and the semantic interpretation of the query to derive secondary search results, which are displayed along with the primary search results.

    摘要翻译: 一种用于执行多级搜索的计算机可实现的方法和系统。 该方法包括执行涉及执行由用户提交的查询以及返回主搜索结果(例如文档列表)的主搜索。 该方法还包括自动执行辅助搜索。 辅助搜索涉及基于查询识别至少一个第三方信息源,并自动评估查询的语义解释。 辅助搜索利用所识别的至少一个第三方信息源和查询的语义解释来导出与搜索结果一起显示的辅助搜索结果。

    Web spam page classification using query-dependent data
    7.
    发明授权
    Web spam page classification using query-dependent data 有权
    网页垃圾邮件分类使用查询相关数据

    公开(公告)号:US07853589B2

    公开(公告)日:2010-12-14

    申请号:US11742156

    申请日:2007-04-30

    IPC分类号: G06F17/30

    CPC分类号: G06F17/3089

    摘要: A web spam page classifier is described that identifies web spam pages based on features of a search query and web page pair. The features can be extracted from training instances and a training algorithm can be employed to develop the classifier. Pages identified as web spam pages can be demoted and/or removed from a relevancy ranked list.

    摘要翻译: 描述了基于搜索查询和网页对的特征来识别网页垃圾邮件页面的网页垃圾邮件页面分类器。 可以从训练实例中提取特征,并且可以采用训练算法来开发分类器。 识别为Web垃圾邮件页面的页面可以从相关性排名列表中降级和/或删除。

    Multi-level search
    8.
    发明授权
    Multi-level search 有权
    多级搜索

    公开(公告)号:US07747600B2

    公开(公告)日:2010-06-29

    申请号:US11818088

    申请日:2007-06-13

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30657

    摘要: A computer-implementable method and system for performing a multi-level search. The method includes performing a primary search that involves executing a query submitted by a user, and returning primary search results (a list of documents, for example). The method further includes automatically performing a secondary search. The secondary search involves identifying at least one third-party source of information based on the query, and automatically assessing a semantic interpretation of the query. The secondary search utilizes the identified at least one third-party source of information and the semantic interpretation of the query to derive secondary search results, which are displayed along with the primary search results.

    摘要翻译: 一种用于执行多级搜索的计算机可实现的方法和系统。 该方法包括执行涉及执行由用户提交的查询以及返回主搜索结果(例如文档列表)的主搜索。 该方法还包括自动执行辅助搜索。 辅助搜索涉及基于查询识别至少一个第三方信息源,并自动评估查询的语义解释。 辅助搜索利用所识别的至少一个第三方信息源和查询的语义解释来导出与搜索结果一起显示的辅助搜索结果。

    WEB SPAM PAGE CLASSIFICATION USING QUERY-DEPENDENT DATA
    9.
    发明申请
    WEB SPAM PAGE CLASSIFICATION USING QUERY-DEPENDENT DATA 有权
    使用查询依赖数据进行网页垃圾邮件分类

    公开(公告)号:US20080270376A1

    公开(公告)日:2008-10-30

    申请号:US11742156

    申请日:2007-04-30

    IPC分类号: G06F17/30

    CPC分类号: G06F17/3089

    摘要: A web spam page classifier is described that identifies web spam pages based on features of a search query and web page pair. The features can be extracted from training instances and a training algorithm can be employed to develop the classifier. Pages identified as web spam pages can be demoted and/or removed from a relevancy ranked list.

    摘要翻译: 描述了基于搜索查询和网页对的特征来识别网页垃圾邮件页面的网页垃圾邮件页面分类器。 可以从训练实例中提取特征,并且可以采用训练算法来开发分类器。 识别为Web垃圾邮件页面的页面可以从相关性排名列表中降级和/或删除。