摘要:
A method for transmitting information in a communication network of multiple nodes, in which information transmission is partitioned into successive superframes, and in which each superframe is partitioned into a beacon period followed by a data period, which may consist of a contention free period (CFP), and each beacon period and CFP of the data period is partitioned into timeslots. The method includes allocating to at least a first node of the multiple nodes a designated timeslot in which to transmit data in at least one of a plurality of superframes, and allocating to at least a second node of the multiple nodes the same designated timeslot in which to transmit information during at least one subsequent superframe.
摘要:
A method performs handover of a mobile station (MS from a current base station (BSC) connected to a target base station (BST) via a backbone in a Worldwide interoperability for Microwave Access (WiMAX) mobile communication network. The MS, before handover, transmits a Connection Identifier Request (CID-REQ) to the BST via the BSC, and receiving a Connection Identifier Response (CID-RSP) from the BST via the BSC. The MS, before handover, transmits a Subscriber Station (SS) Basic Capability Request (SBC-REQ), and receives a SS Basic Capability Response (SBC-RSP) from the BST via the BSC. Then, the MS transmits a Ranging Request (RNG-REQ) to the BST, and receives a Ranging Response (RNG-RSP) from the BST. During the handover, the MS transmits a Registration Request (REG-REQ) to the BST, and receives a Registration Response from the BST to establish the connection between the MS and the BST.
摘要:
Multiple routes from a data source node to multiple data destination nodes in a large scale multi-hop mesh network are discovered. Nodes discover multiple routes to two destinations in an initial discovery phase that includes only two network-wide flooding of packets. The method can also work with one destination. The method can be extended to include more destinations with a proportional increase in the communication overhead. After the completion of the discovery phase, nodes can communicate or forward their own or received data by using any of the available routes.
摘要:
An operation channel in a multi-hop network is determined. The network uses a set of channels, and one of the nodes is a network management node. The operation channel is selected in the network management node. Then, the network management node broadcasts a channel information packet including the operation channel using all channels. The channel information packet is received in each of other nodes, either directly from the network management node or from an intermediate node that received and rebroadcasted the channel information packet. Lastly, the operation channel in each node is set according to the channel information packet until the network is formed.
摘要:
A hybrid communication network for a transportation safety system includes a fixed wired nodes and mobile wireless nodes. Because the wired nodes operate independently packets transmitted by the wired nodes to the wireless nodes need to be synchronized. A downlink travel time for downlink packets traveling from a controller to the wireless nodes is determined. Then, the controller schedules downlink data intervals (DDI) based on the downlink travel time; and transmits downlink packets to the wireless nodes during the DDI, such that a latency requirement of the transportation safety system is satisfied.
摘要:
A set of routes are discovered in a network including concentrators, smart meters and an imaginary node. Each concentrator node, a source, broadcasts a route request (RREQ) packet to the imaginary destination node. Intermediate nodes store a route as a node list (NL) in the RREQ packet and as a route table (RT) in the node. Then, each smart meter node can select a primary route and a secondary route from the smart meter node to any concentrator from the route table.
摘要:
A method for transmitting information in a communication network of multiple nodes, in which information transmission is partitioned into successive superframes, and in which each superframe is partitioned into a beacon period followed by a data period, which may consist of a contention free period (CFP), and each beacon period and CFP of the data period is partitioned into timeslots. The method includes allocating to at least a first node of the multiple nodes a designated timeslot in which to transmit data in at least one of a plurality of superframes, and allocating to at least a second node of the multiple nodes the same designated timeslot in which to transmit information during at least one subsequent superframe.
摘要:
An operation channel in a multi-hop network is determined. The network uses a set of channels, and one of the nodes is a network management node. The operation channel is selected in the network management node. Then, the network management node broadcasts a channel information packet including the operation channel using all channels. The channel information packet is received in each of other nodes, either directly from the network management node or from an intermediate node that received and rebroadcasted the channel information packet. Lastly, the operation channel in each node is set according to the channel information packet until the network is formed.
摘要:
A hybrid communication network for a transportation safety system includes a wired network including a set of fixed nodes. Each fixed node includes a wired interface for connecting the fixed node to the wired network and at least one wireless interface. The set of fixed nodes further includes a head node at a first end of the wired network connected to a controller, a terminal node at a second end of the wired network, and a set of relay nodes arranged between the head node and the terminal node. A wireless network includes a set of mobile nodes and a set of fixed nodes connected to the wired network. Each mobile node includes at least one of the wireless interfaces, and each mobile node is arranged in a moveable car.
摘要:
Broken links in a sensor network are avoided by representing the network as a DODAG. A rank associated with each node defines a position of each node relative to other nodes, and the rank is in a form of a proper fraction, and the rank of each node never increases to enable loop-free routing.