摘要:
The invention includes pharmaceutically active compounds and methods of treatment and pharmaceutical compositions that utilize or comprise one or more such compounds. Compounds of the invention are particularly useful for treatment or prophylaxis of undesired thrombosis.
摘要:
The invention includes antibodies that provide superior anti-coagulant activity by binding native human TF with high affinity and specificity. Antibodies of the invention can effectively inhibit blood coagulation in vivo. Antibodies of the invention can bind native human TF, either alone or present in a TF:VIIa complex, effectively preventing factor X binding to TF or that complex, and thereby reducing blood coagulation. Preferred antibodies of the invention specifically bind a conformational epitope predominant to native human TF, which epitope provides an unexpectedly strong antibody binding site.
摘要:
The invention includes antibodies that provide superior anti-coagulant activity by binding native human TF with high affinity and specificity. Antibodies of the invention can effectively inhibit blood coagulation in vivo. Antibodies of the invention can bind native human TF, either alone or present in a TF:FVIIa complex, effectively preventing factor X or FIX binding to TF or that complex, and thereby reducing blood coagulation. Preferred antibodies of the invention specifically bind a conformational epitope predominant to native human TF, which epitope provides an unexpectedly strong antibody binding site. Also provided are humanized antibodies and fragments thereof that bind to the TF.
摘要:
The invention includes pharmaceutically active compounds and methods of treatment and pharmaceutical compositions that utilize or comprise one or more such compounds. Compounds of the invention are particularly useful for treatment or prophylaxis of undesired thrombosis.
摘要:
The invention includes methods of inhibiting blood coagulation using antibodies that provide superior anti-coagulant activity by binding native human TF with high affinity and specificity. Methods of the invention can effectively inhibit blood coagulation in vivo. Antibodies used in the methods of the invention can bind native human TF, either alone or present in a TF:VIIa complex, effectively preventing factor X binding to TF or that complex, and thereby reducing blood coagulation. Preferred antibodies used in the methods of the invention specifically bind a conformational epitope predominant to native human TF, which epitope provides an unexpectedly strong antibody binding site.
摘要:
The invention includes antibodies that provide superior anti-coagulant activity by binding native human TF with high affinity and specificity. Antibodies of the invention can effectively inhibit blood coagulation in vivo. Antibodies of the invention can bind native human TF, either alone or present in a TF:VIIa complex, effectively preventing factor X binding to TF or that complex, and thereby reducing blood coagulation. Preferred antibodies of the invention specifically bind a conformational epitope predominant to native human TF, which epitope provides an unexpectedly strong antibody binding site.
摘要:
The invention includes antibodies that provide superior anti-coagulant activity by binding native human TF with high affinity and specificity. Antibodies of the invention can effectively inhibit blood coagulation in vivo. Antibodies of the invention can bind native human TF, either alone or present in a TF:VIIa complex, effectively preventing factor X binding to TF or that complex, and thereby reducing blood coagulation. Preferred antibodies of the invention specifically bind a conformational epitope predominant to native human TF, which epitope provides an unexpectedly strong antibody binding site.
摘要:
The invention includes antibodies that provide superior anti-coagulant activity by binding native human TF with high affinity and specificity. Antibodies of the invention can effectively inhibit blood coagulation in vivo. Antibodies of the invention can bind native human TF, either alone or present in a TF:VIIa complex, effectively preventing factor X binding to TF or that complex, and thereby reducing blood coagulation. Preferred antibodies of the invention specifically bind a conformational epitope predominant to native human TF, which epitope provides an unexpectedly strong antibody binding site.