Estimating word correlations from images
    1.
    发明授权
    Estimating word correlations from images 有权
    从图像估计字相关性

    公开(公告)号:US08457416B2

    公开(公告)日:2013-06-04

    申请号:US11956333

    申请日:2007-12-13

    IPC分类号: G06K9/72

    CPC分类号: G06F17/30247 G06F17/30731

    摘要: Word correlations are estimated using a content-based method, which uses visual features of image representations of the words. The image representations of the subject words may be generated by retrieving images from data sources (such as the Internet) using image search with the subject words as query words. One aspect of the techniques is based on calculating the visual distance or visual similarity between the sets of retrieved images corresponding to each query word. The other is based on calculating the visual consistence among the set of the retrieved images corresponding to a conjunctive query word. The combination of the content-based method and a text-based method may produce even better result.

    摘要翻译: 使用基于内容的方法来估计词相关性,其使用词的图像表示的视觉特征。 可以通过使用将主题词作为查询词的图像搜索从数据源(例如因特网)检索图像来生成主题词的图像表示。 该技术的一个方面是基于计算对应于每个查询词的检索图像组之间的视觉距离或视觉相似度。 另一个是基于计算与连接查询词对应的检索到的图像的集合之间的视觉一致性。 基于内容的方法和基于文本的方法的组合可以产生更好的结果。

    Estimating Word Correlations from Images
    2.
    发明申请
    Estimating Word Correlations from Images 有权
    估计图像中的词相关性

    公开(公告)号:US20090074306A1

    公开(公告)日:2009-03-19

    申请号:US11956333

    申请日:2007-12-13

    IPC分类号: G06K9/72

    CPC分类号: G06F17/30247 G06F17/30731

    摘要: Word correlations are estimated using a content-based method, which uses visual features of image representations of the words. The image representations of the subject words may be generated by retrieving images from data sources (such as the Internet) using image search with the subject words as query words. One aspect of the techniques is based on calculating the visual distance or visual similarity between the sets of retrieved images corresponding to each query word. The other is based on calculating the visual consistence among the set of the retrieved images corresponding to a conjunctive query word. The combination of the content-based method and a text-based method may produce even better result.

    摘要翻译: 使用基于内容的方法来估计词相关性,其使用词的图像表示的视觉特征。 可以通过使用将主题词作为查询词的图像搜索从数据源(例如因特网)检索图像来生成主题词的图像表示。 该技术的一个方面是基于计算对应于每个查询词的检索图像组之间的视觉距离或视觉相似度。 另一个是基于计算与连接查询词对应的检索到的图像的集合之间的视觉一致性。 基于内容的方法和基于文本的方法的组合可以产生更好的结果。

    Dual Cross-Media Relevance Model for Image Annotation
    3.
    发明申请
    Dual Cross-Media Relevance Model for Image Annotation 有权
    图像注释的双重跨媒体相关性模型

    公开(公告)号:US20090076800A1

    公开(公告)日:2009-03-19

    申请号:US11956331

    申请日:2007-12-13

    IPC分类号: G06F17/21

    CPC分类号: G06F17/241 G06F17/2735

    摘要: A dual cross-media relevance model (DCMRM) is used for automatic image annotation. In contrast to the traditional relevance models which calculate the joint probability of words and images over a training image database, the DCMRM model estimates the joint probability by calculating the expectation over words in a predefined lexicon. The DCMRM model may be advantageous because a predefined lexicon potentially has better behavior than a training image database. The DCMRM model also takes advantage of content-based techniques and image search techniques to define the word-to-image and word-to-word relations involved in image annotation. Both relations can be estimated by using image search techniques on the web data as well as available training data.

    摘要翻译: 双重跨媒体相关性模型(DCMRM)用于自动图像注释。 与在训练图像数据库中计算单词和图像的联合概率的传统相关性模型相反,DCMRM模型通过计算预定义词典中的单词的期望来估计联合概率。 DCMRM模型可能是有利的,因为预定义词典潜在地具有比训练图像数据库更好的行为。 DCMRM模型还利用基于内容的技术和图像搜索技术来定义图像注释中涉及的单词到图像和单词对字的关系。 可以通过使用图像搜索技术对网络数据以及可用的训练数据来估计这两个关系。

    Detecting duplicate images using hash code grouping
    4.
    发明授权
    Detecting duplicate images using hash code grouping 有权
    使用哈希码分组检测重复的图像

    公开(公告)号:US07647331B2

    公开(公告)日:2010-01-12

    申请号:US11277727

    申请日:2006-03-28

    CPC分类号: G06F17/30864

    摘要: A duplicate image detection system generates an image table that maps hash codes of images to their corresponding images. The image table may group images according to their group identifiers generated from the most significant elements of the hash codes based on significance of the elements in representing an image. The image table thus segregates images by their group identifiers. To detect a duplicate image of a target image, the detection system generates a target hash code for the target image. The detection system then identifies the group of the target image based on the group identifier of the target hash code. After identifying the group identifier, the detection system searches the corresponding group table to identify hash codes that have values that are similar to the target hash code. The detection system then selects the images associated with those similar hash codes as being duplicates of the target image.

    摘要翻译: 复制图像检测系统生成将图像的哈希码映射到其对应图像的图像表。 图像表可以根据基于代表图像的元素的重要性从哈希码的最重要元素生成的组标识符来对图像进行分组。 因此,图像表通过其组标识符隔离图像。 为了检测目标图像的重复图像,检测系统生成目标图像的目标散列码。 然后,检测系统基于目标散列码的组标识符来识别目标图像的组。 在识别组标识符之后,检测系统搜索对应的组表以识别具有与目标散列码相似的值的散列码。 然后,检测系统选择与这些类似的哈希码相关联的图像作为目标图像的重复。

    Detecting Duplicate Images Using Hash Code Grouping
    5.
    发明申请
    Detecting Duplicate Images Using Hash Code Grouping 有权
    使用哈希代码分组检测重复的图像

    公开(公告)号:US20070239756A1

    公开(公告)日:2007-10-11

    申请号:US11277727

    申请日:2006-03-28

    IPC分类号: G06F7/00

    CPC分类号: G06F17/30864

    摘要: A duplicate image detection system generates an image table that maps hash codes of images to their corresponding images. The image table may group images according to their group identifiers generated from the most significant elements of the hash codes based on significance of the elements in representing an image. The image table thus segregates images by their group identifiers. To detect a duplicate image of a target image, the detection system generates a target hash code for the target image. The detection system then identifies the group of the target image based on the group identifier of the target hash code. After identifying the group identifier, the detection system searches the corresponding group table to identify hash codes that have values that are similar to the target hash code. The detection system then selects the images associated with those similar hash codes as being duplicates of the target image.

    摘要翻译: 复制图像检测系统生成将图像的哈希码映射到其对应图像的图像表。 图像表可以根据基于代表图像的元素的重要性从哈希码的最重要元素生成的组标识符来对图像进行分组。 因此,图像表通过其组标识符隔离图像。 为了检测目标图像的重复图像,检测系统生成目标图像的目标散列码。 然后,检测系统基于目标散列码的组标识符来识别目标图像的组。 在识别组标识符之后,检测系统搜索对应的组表以识别具有与目标散列码相似的值的散列码。 然后,检测系统选择与这些类似的哈希码相关联的图像作为目标图像的重复。

    Dual cross-media relevance model for image annotation
    6.
    发明授权
    Dual cross-media relevance model for image annotation 有权
    用于图像注释的双跨媒体相关性模型

    公开(公告)号:US08571850B2

    公开(公告)日:2013-10-29

    申请号:US11956331

    申请日:2007-12-13

    IPC分类号: G06F17/27

    CPC分类号: G06F17/241 G06F17/2735

    摘要: A dual cross-media relevance model (DCMRM) is used for automatic image annotation. In contrast to the traditional relevance models which calculate the joint probability of words and images over a training image database, the DCMRM model estimates the joint probability by calculating the expectation over words in a predefined lexicon. The DCMRM model may be advantageous because a predefined lexicon potentially has better behavior than a training image database. The DCMRM model also takes advantage of content-based techniques and image search techniques to define the word-to-image and word-to-word relations involved in image annotation. Both relations can be estimated by using image search techniques on the web data as well as available training data.

    摘要翻译: 双重跨媒体相关性模型(DCMRM)用于自动图像注释。 与在训练图像数据库中计算单词和图像的联合概率的传统相关性模型相反,DCMRM模型通过计算预定义词典中的单词的期望来估计联合概率。 DCMRM模型可能是有利的,因为预定义词典潜在地具有比训练图像数据库更好的行为。 DCMRM模型还利用基于内容的技术和图像搜索技术来定义图像注释中涉及的单词到图像和单词对字的关系。 可以通过使用图像搜索技术对网络数据以及可用的训练数据来估计这两个关系。

    Bipartite graph reinforcement modeling to annotate web images
    7.
    发明授权
    Bipartite graph reinforcement modeling to annotate web images 有权
    双边图加强建模以注释网页图像

    公开(公告)号:US08321424B2

    公开(公告)日:2012-11-27

    申请号:US11848157

    申请日:2007-08-30

    IPC分类号: G06F7/00 G06F17/30

    CPC分类号: G06F17/30265 G06F17/30864

    摘要: Systems and methods for bipartite graph reinforcement modeling to annotate web images are described. In one aspect the systems and methods implement bipartite graph reinforcement modeling operations to identify a set of annotations that are relevant to a Web image. The systems and methods annotate the Web image with the identified annotations. The systems and methods then index the annotated Web image. Responsive to receiving an image search query from a user, wherein the image search query comprises information relevant to at least a subset of the identified annotations, the image search engine service presents the annotated Web image to the user.

    摘要翻译: 描述了用于注释网络图像的二分图加强建模的系统和方法。 在一个方面,系统和方法实现二分图加强建模操作,以识别与Web图像相关的一组注释。 系统和方法用已识别的注释注释Web图像。 系统和方法然后索引注释的Web图像。 响应于从用户接收图像搜索查询,其中所述图像搜索查询包括与所识别的注释的至少一个子集相关的信息,所述图像搜索引擎服务将所述注释的Web图像呈现给所述用户。

    Automatic classification of photographs and graphics
    8.
    发明申请
    Automatic classification of photographs and graphics 有权
    自动分类照片和图形

    公开(公告)号:US20070196013A1

    公开(公告)日:2007-08-23

    申请号:US11358705

    申请日:2006-02-21

    IPC分类号: G06K9/62 G06K9/00

    CPC分类号: G06K9/00456

    摘要: A method and system for classifying an image as a photograph or a graphic based on a ranked prevalent color histogram feature or a ranked region size feature is provided. The prevalent color histogram feature contains counts of the colors that are most prevalent in the image sorted in descending order. The region size feature contains counts of the largest regions of the image sorted in descending order. The classification system then classifies the image based on the ranked prevalent color histogram feature and/or the ranked region size feature using a previously trained classifier.

    摘要翻译: 提供了一种基于排序流行的颜色直方图特征或排名区域大小特征将图像分类为照片或图形的方法和系统。 流行的颜色直方图特征包含按照降序排列的图像中最流行的颜色的计数。 区域大小特征包含以降序排序的图像的最大区域的计数。 然后,分类系统使用先前训练的分类器,基于排名普遍的颜色直方图特征和/或排名区域大小特征对图像进行分类。

    Training a ranking function using propagated document relevance
    9.
    发明授权
    Training a ranking function using propagated document relevance 有权
    使用传播的文档相关性来训练排名功能

    公开(公告)号:US08001121B2

    公开(公告)日:2011-08-16

    申请号:US11364576

    申请日:2006-02-27

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30657 G06F17/30864

    摘要: A method and system for propagating the relevance of labeled documents to a query to unlabeled documents is provided. The propagation system provides training data that includes queries, documents labeled with their relevance to the queries, and unlabeled documents. The propagation system then calculates the similarity between pairs of documents in the training data. The propagation system then propagates the relevance of the labeled documents to similar, but unlabeled, documents. The propagation system may iteratively propagate labels of the documents until the labels converge on a solution. The training data with the propagated relevances can then be used to train a ranking function.

    摘要翻译: 提供了一种用于将标记的文档的相关性传播到未标记文档的查询的方法和系统。 传播系统提供包括查询,标记为与查询相关的文档以及未标记的文档的培训数据。 传播系统然后计算训练数据中文档对之间的相似度。 传播系统然后将标记的文档的相关性传播到类似但未标记的文档。 传播系统可以迭代地传播文档的标签,直到标签收敛在解决方案上。 然后可以使用具有传播相关性的训练数据来训练排序功能。

    Propagating relevance from labeled documents to unlabeled documents
    10.
    发明申请
    Propagating relevance from labeled documents to unlabeled documents 有权
    从标签文档到未标记的文档传播相关性

    公开(公告)号:US20070203940A1

    公开(公告)日:2007-08-30

    申请号:US11364807

    申请日:2006-02-27

    IPC分类号: G06F17/00

    CPC分类号: G06F17/30864

    摘要: A method and system for propagating the relevance of labeled documents to a query to unlabeled documents is provided. The propagation system provides training data that includes queries, documents labeled with their relevance to the queries, and unlabeled documents. The propagation system then calculates the similarity between pairs of documents in the training data. The propagation system then propagates the relevance of the labeled documents to similar, but unlabeled, documents. The propagation system may iteratively propagate labels of the documents until the labels converge on a solution. The training data with the propagated relevances can then be used to train a ranking function.

    摘要翻译: 提供了一种用于将标记的文档的相关性传播到未标记文档的查询的方法和系统。 传播系统提供包括查询,标记为与查询相关的文档以及未标记的文档的培训数据。 传播系统然后计算训练数据中文档对之间的相似度。 传播系统然后将标记的文档的相关性传播到类似但未标记的文档。 传播系统可以迭代地传播文档的标签,直到标签收敛在解决方案上。 然后可以使用具有传播相关性的训练数据来训练排序功能。