-
公开(公告)号:US08571850B2
公开(公告)日:2013-10-29
申请号:US11956331
申请日:2007-12-13
申请人: Mingjing Li , Jing Lui , Bin Wang , Zhiwei Li , Wei-Ying Ma
发明人: Mingjing Li , Jing Lui , Bin Wang , Zhiwei Li , Wei-Ying Ma
IPC分类号: G06F17/27
CPC分类号: G06F17/241 , G06F17/2735
摘要: A dual cross-media relevance model (DCMRM) is used for automatic image annotation. In contrast to the traditional relevance models which calculate the joint probability of words and images over a training image database, the DCMRM model estimates the joint probability by calculating the expectation over words in a predefined lexicon. The DCMRM model may be advantageous because a predefined lexicon potentially has better behavior than a training image database. The DCMRM model also takes advantage of content-based techniques and image search techniques to define the word-to-image and word-to-word relations involved in image annotation. Both relations can be estimated by using image search techniques on the web data as well as available training data.
摘要翻译: 双重跨媒体相关性模型(DCMRM)用于自动图像注释。 与在训练图像数据库中计算单词和图像的联合概率的传统相关性模型相反,DCMRM模型通过计算预定义词典中的单词的期望来估计联合概率。 DCMRM模型可能是有利的,因为预定义词典潜在地具有比训练图像数据库更好的行为。 DCMRM模型还利用基于内容的技术和图像搜索技术来定义图像注释中涉及的单词到图像和单词对字的关系。 可以通过使用图像搜索技术对网络数据以及可用的训练数据来估计这两个关系。
-
公开(公告)号:US08457416B2
公开(公告)日:2013-06-04
申请号:US11956333
申请日:2007-12-13
申请人: Jing Liu , Bin Wang , Zhiwei Li , Mingjing Li , Wei-Ying Ma
发明人: Jing Liu , Bin Wang , Zhiwei Li , Mingjing Li , Wei-Ying Ma
IPC分类号: G06K9/72
CPC分类号: G06F17/30247 , G06F17/30731
摘要: Word correlations are estimated using a content-based method, which uses visual features of image representations of the words. The image representations of the subject words may be generated by retrieving images from data sources (such as the Internet) using image search with the subject words as query words. One aspect of the techniques is based on calculating the visual distance or visual similarity between the sets of retrieved images corresponding to each query word. The other is based on calculating the visual consistence among the set of the retrieved images corresponding to a conjunctive query word. The combination of the content-based method and a text-based method may produce even better result.
摘要翻译: 使用基于内容的方法来估计词相关性,其使用词的图像表示的视觉特征。 可以通过使用将主题词作为查询词的图像搜索从数据源(例如因特网)检索图像来生成主题词的图像表示。 该技术的一个方面是基于计算对应于每个查询词的检索图像组之间的视觉距离或视觉相似度。 另一个是基于计算与连接查询词对应的检索到的图像的集合之间的视觉一致性。 基于内容的方法和基于文本的方法的组合可以产生更好的结果。
-
公开(公告)号:US20090074306A1
公开(公告)日:2009-03-19
申请号:US11956333
申请日:2007-12-13
申请人: Jing Liu , Bin Wang , Zhiwei Li , Mingjing Li , Wei-Ying Ma
发明人: Jing Liu , Bin Wang , Zhiwei Li , Mingjing Li , Wei-Ying Ma
IPC分类号: G06K9/72
CPC分类号: G06F17/30247 , G06F17/30731
摘要: Word correlations are estimated using a content-based method, which uses visual features of image representations of the words. The image representations of the subject words may be generated by retrieving images from data sources (such as the Internet) using image search with the subject words as query words. One aspect of the techniques is based on calculating the visual distance or visual similarity between the sets of retrieved images corresponding to each query word. The other is based on calculating the visual consistence among the set of the retrieved images corresponding to a conjunctive query word. The combination of the content-based method and a text-based method may produce even better result.
摘要翻译: 使用基于内容的方法来估计词相关性,其使用词的图像表示的视觉特征。 可以通过使用将主题词作为查询词的图像搜索从数据源(例如因特网)检索图像来生成主题词的图像表示。 该技术的一个方面是基于计算对应于每个查询词的检索图像组之间的视觉距离或视觉相似度。 另一个是基于计算与连接查询词对应的检索到的图像的集合之间的视觉一致性。 基于内容的方法和基于文本的方法的组合可以产生更好的结果。
-
公开(公告)号:US07647331B2
公开(公告)日:2010-01-12
申请号:US11277727
申请日:2006-03-28
申请人: Mingjing Li , Bin Wang , Wei-Ying Ma , Zhiwei Li
发明人: Mingjing Li , Bin Wang , Wei-Ying Ma , Zhiwei Li
CPC分类号: G06F17/30864
摘要: A duplicate image detection system generates an image table that maps hash codes of images to their corresponding images. The image table may group images according to their group identifiers generated from the most significant elements of the hash codes based on significance of the elements in representing an image. The image table thus segregates images by their group identifiers. To detect a duplicate image of a target image, the detection system generates a target hash code for the target image. The detection system then identifies the group of the target image based on the group identifier of the target hash code. After identifying the group identifier, the detection system searches the corresponding group table to identify hash codes that have values that are similar to the target hash code. The detection system then selects the images associated with those similar hash codes as being duplicates of the target image.
摘要翻译: 复制图像检测系统生成将图像的哈希码映射到其对应图像的图像表。 图像表可以根据基于代表图像的元素的重要性从哈希码的最重要元素生成的组标识符来对图像进行分组。 因此,图像表通过其组标识符隔离图像。 为了检测目标图像的重复图像,检测系统生成目标图像的目标散列码。 然后,检测系统基于目标散列码的组标识符来识别目标图像的组。 在识别组标识符之后,检测系统搜索对应的组表以识别具有与目标散列码相似的值的散列码。 然后,检测系统选择与这些类似的哈希码相关联的图像作为目标图像的重复。
-
公开(公告)号:US20090076800A1
公开(公告)日:2009-03-19
申请号:US11956331
申请日:2007-12-13
申请人: Mingjing Li , Jing Liu , Bin Wang , Zhiwei Li , Wei-Ying Ma
发明人: Mingjing Li , Jing Liu , Bin Wang , Zhiwei Li , Wei-Ying Ma
IPC分类号: G06F17/21
CPC分类号: G06F17/241 , G06F17/2735
摘要: A dual cross-media relevance model (DCMRM) is used for automatic image annotation. In contrast to the traditional relevance models which calculate the joint probability of words and images over a training image database, the DCMRM model estimates the joint probability by calculating the expectation over words in a predefined lexicon. The DCMRM model may be advantageous because a predefined lexicon potentially has better behavior than a training image database. The DCMRM model also takes advantage of content-based techniques and image search techniques to define the word-to-image and word-to-word relations involved in image annotation. Both relations can be estimated by using image search techniques on the web data as well as available training data.
摘要翻译: 双重跨媒体相关性模型(DCMRM)用于自动图像注释。 与在训练图像数据库中计算单词和图像的联合概率的传统相关性模型相反,DCMRM模型通过计算预定义词典中的单词的期望来估计联合概率。 DCMRM模型可能是有利的,因为预定义词典潜在地具有比训练图像数据库更好的行为。 DCMRM模型还利用基于内容的技术和图像搜索技术来定义图像注释中涉及的单词到图像和单词对字的关系。 可以通过使用图像搜索技术对网络数据以及可用的训练数据来估计这两个关系。
-
公开(公告)号:US20070239756A1
公开(公告)日:2007-10-11
申请号:US11277727
申请日:2006-03-28
申请人: Mingjing Li , Bin Wang , Wei-Ying Ma , Zhiwei Li
发明人: Mingjing Li , Bin Wang , Wei-Ying Ma , Zhiwei Li
IPC分类号: G06F7/00
CPC分类号: G06F17/30864
摘要: A duplicate image detection system generates an image table that maps hash codes of images to their corresponding images. The image table may group images according to their group identifiers generated from the most significant elements of the hash codes based on significance of the elements in representing an image. The image table thus segregates images by their group identifiers. To detect a duplicate image of a target image, the detection system generates a target hash code for the target image. The detection system then identifies the group of the target image based on the group identifier of the target hash code. After identifying the group identifier, the detection system searches the corresponding group table to identify hash codes that have values that are similar to the target hash code. The detection system then selects the images associated with those similar hash codes as being duplicates of the target image.
摘要翻译: 复制图像检测系统生成将图像的哈希码映射到其对应图像的图像表。 图像表可以根据基于代表图像的元素的重要性从哈希码的最重要元素生成的组标识符来对图像进行分组。 因此,图像表通过其组标识符隔离图像。 为了检测目标图像的重复图像,检测系统生成目标图像的目标散列码。 然后,检测系统基于目标散列码的组标识符来识别目标图像的组。 在识别组标识符之后,检测系统搜索对应的组表以识别具有与目标散列码相似的值的散列码。 然后,检测系统选择与这些类似的哈希码相关联的图像作为目标图像的重复。
-
公开(公告)号:US08321424B2
公开(公告)日:2012-11-27
申请号:US11848157
申请日:2007-08-30
申请人: Mingjing Li , Wei-Ying Ma , Zhiwei Li , Xiaoguang Rui
发明人: Mingjing Li , Wei-Ying Ma , Zhiwei Li , Xiaoguang Rui
CPC分类号: G06F17/30265 , G06F17/30864
摘要: Systems and methods for bipartite graph reinforcement modeling to annotate web images are described. In one aspect the systems and methods implement bipartite graph reinforcement modeling operations to identify a set of annotations that are relevant to a Web image. The systems and methods annotate the Web image with the identified annotations. The systems and methods then index the annotated Web image. Responsive to receiving an image search query from a user, wherein the image search query comprises information relevant to at least a subset of the identified annotations, the image search engine service presents the annotated Web image to the user.
摘要翻译: 描述了用于注释网络图像的二分图加强建模的系统和方法。 在一个方面,系统和方法实现二分图加强建模操作,以识别与Web图像相关的一组注释。 系统和方法用已识别的注释注释Web图像。 系统和方法然后索引注释的Web图像。 响应于从用户接收图像搜索查询,其中所述图像搜索查询包括与所识别的注释的至少一个子集相关的信息,所述图像搜索引擎服务将所述注释的Web图像呈现给所述用户。
-
公开(公告)号:US20070196013A1
公开(公告)日:2007-08-23
申请号:US11358705
申请日:2006-02-21
申请人: Mingjing Li , Wei-Ying Ma , Yuanhao Chen , Zhiwei Li
发明人: Mingjing Li , Wei-Ying Ma , Yuanhao Chen , Zhiwei Li
CPC分类号: G06K9/00456
摘要: A method and system for classifying an image as a photograph or a graphic based on a ranked prevalent color histogram feature or a ranked region size feature is provided. The prevalent color histogram feature contains counts of the colors that are most prevalent in the image sorted in descending order. The region size feature contains counts of the largest regions of the image sorted in descending order. The classification system then classifies the image based on the ranked prevalent color histogram feature and/or the ranked region size feature using a previously trained classifier.
摘要翻译: 提供了一种基于排序流行的颜色直方图特征或排名区域大小特征将图像分类为照片或图形的方法和系统。 流行的颜色直方图特征包含按照降序排列的图像中最流行的颜色的计数。 区域大小特征包含以降序排序的图像的最大区域的计数。 然后,分类系统使用先前训练的分类器,基于排名普遍的颜色直方图特征和/或排名区域大小特征对图像进行分类。
-
公开(公告)号:US08126274B2
公开(公告)日:2012-02-28
申请号:US11847959
申请日:2007-08-30
申请人: Mingjing Li , Wei-Ying Ma , Zhiwei Li , Lei Wu
发明人: Mingjing Li , Wei-Ying Ma , Zhiwei Li , Lei Wu
IPC分类号: G06K9/62
CPC分类号: G06K9/4685 , G06K9/4642 , G06K9/6278
摘要: Systems and methods for visual language modeling for image classification are described. In one aspect the systems and methods model training images corresponding to multiple image categories as matrices of visual words. Visual language models are generated from the matrices. In view of a given image, for example, provided by a user or from the Web, the systems and methods determine an image category corresponding to the given image. This image categorization is accomplished by maximizing the posterior probability of visual words associated with the given image over the visual language models. The image category, or a result corresponding to the image category, is presented to the user.
摘要翻译: 描述了用于图像分类的视觉语言建模的系统和方法。 在一个方面,系统和方法将对应于多个图像类别的训练图像建模为视觉词的矩阵。 视觉语言模型是从矩阵生成的。 考虑到例如由用户或从Web提供的给定图像,系统和方法确定对应于给定图像的图像类别。 这种图像分类是通过在视觉语言模型上最大化与给定图像相关联的视觉词的后验概率来实现的。 图像类别或与图像类别对应的结果被呈现给用户。
-
公开(公告)号:US07788263B2
公开(公告)日:2010-08-31
申请号:US11256353
申请日:2005-10-21
申请人: Zhiwei Li , Mingjing Li , Wei-Ying Ma
发明人: Zhiwei Li , Mingjing Li , Wei-Ying Ma
CPC分类号: G06F17/30684 , G06F17/30687
摘要: Probabilistic retrospective event detection is described. In one aspect, event parameters are initialized to identify a number of events from a corpus of documents. Using a generative model, documents are determined to be associated with an event to detect representative events from the identified number of events.
摘要翻译: 描述概率回顾事件检测。 在一个方面,事件参数被初始化以从文档语料库中识别多个事件。 使用生成模型,文档被确定为与事件相关联以从所识别的事件数量检测代表事件。
-
-
-
-
-
-
-
-
-