摘要:
Disclosed herein is a dual processing system capable of ensuring real-time processing in a protocol conformance test. A protocol testing device performs a test on a layer under protocol test provided in a device under test. A communication device processes the protocol of a layer below the layer under protocol test between the device under test and the protocol testing device. The communication device processes a protocol test message, requiring real-time processing, instead of the protocol testing device, and transmits processing results for the protocol test message to the protocol testing device. The protocol testing device processes a protocol test message, not requiring real-time processing, and determines the conformance of the layer under protocol test provided in the device under test based on the processing results for the protocol test message.
摘要:
Disclosed herein is a dual processing system capable of ensuring real-time processing in a protocol conformance test. A protocol testing device performs a test on a layer under protocol test provided in a device under test. A communication device processes the protocol of a layer below the layer under protocol test between the device under test and the protocol testing device. The communication device processes a protocol test message, requiring real-time processing, instead of the protocol testing device, and transmits processing results for the protocol test message to the protocol testing device. The protocol testing device processes a protocol test message, not requiring real-time processing, and determines the conformance of the layer under protocol test provided in the device under test based on the processing results for the protocol test message.
摘要:
Disclosed herein is a portable Internet analyzer (PIA) having a handover test function. The portable Internet analyzer includes a transmission unit, a reception unit, a switching unit, and a central control unit. The transmission unit encodes the various DownLink signals of a serving and/or target Base Station (stBS) using a preamble index, synthesizes the encoded signals, and sends the synthesized signals to a Portable Subscriber Station (PSS). The reception unit receives various UpLink (UL) signals from the PSS, and decodes the UL signals using the cell Parameters of the stBS. The switching unit selectively switches the transmission unit and the reception unit to the PSS. The central control unit generates various Media Access Control (MAC) messages to be sent to the PSS through the transmission unit in association with the handover test, analyzes handover test-related MAC messages received through the reception unit, and controls switching operation of the switching unit.
摘要:
Disclosed herein is a method of acquiring Uplink (UL) synchronization for a mobile WiMax system analyzer. When a DL sub-frame is received, the method is performed on a Portable Subscriber Station (PSS) having a test mode function of creating a UL sub-frame through the mobile WiMax system analyzer having signal generating means configured to store the CID information in advance and signal analyzing means configured to receive and analyze the DL sub-frame. The method includes step (a) of the signal generating means continuously D/A converting, RF-modulating and outputting the DL sub-frame, step (b) of the signal analyzing means receiving the UL sub-frame, step (c) of the signal analyzing means continuously demodulating, A/D-converting and capturing the modulated UL sub-frame, and step (d) of the signal analyzing means acquiring UL synchronization by comparing the UL sub-frame with the data captured at step (c) using a time correlation technique.
摘要:
Disclosed herein are an apparatus and method for synchronizing a signal analyzer. The apparatus includes an Analog-to-Digital Converter (ADC), a signal storage unit, a trigger signal generation unit, a signal acquisition control unit, a signal analysis unit, and a time error control unit. The ADC converts the input signal into a corresponding digital signal. The signal storage unit stores therein the digital signal received from the ADC. The trigger signal generation unit generates a trigger signal for each predetermined period. the signal acquisition control unit acquires the digital signal from a signal acquisition time point. The signal analysis unit calculates the start position of a frame from the digital signal. The time error control unit calculates a time error between the time point at which each trigger signal is generated and the start position of the digital signal, and sets a subsequent signal acquisition time point based on the calculated time errors.
摘要:
This invention relates to an automatic detection apparatus for UL/DL configuration in LTE-TDD signal and the method thereby for automatically detecting the UL/DL configuration number of an LTE-TDD signal without a decoder by using a simple structure. An automatic detection apparatus for UL/DL configuration in LTE-TDD signal comprises: a signal receiving unit for receiving an LTE-TDD RF signal and converting the LTE-TDD RF signal into a LTE-TDD baseband signal; a signal extracting unit for extracting a cell-specific reference signal for each subframe length in one frame length of the LTE-TDD baseband signal received from the signal receiving unit; a signal power measurement unit for measuring the power of the corresponding subframe reference signal according to the cell-specific reference signal received from the signal extracting unit; and an UL/DL configuration determination unit for determining whether the corresponding subframe is a DL subframe or an UL subframe according to the comparison result of the power of the corresponding subframe reference signal measured in the signal power measurement unit with a predetermined reference value, and determining the UL/DL configuration number for the corresponding frame based on the subframe number determined as described above. In the above configuration, it is characterized in that the predetermined reference value is the noise power without any LTE-TDD signal.
摘要:
The present invention relates to a method for shortening the time taken for physical random access channel (PRACH) signal synchronization and preamble sequence detection in an LTE uplink system, and more particularly, to a method for shortening the time taken for preamble sequence detection using an inverse discrete Fourier transform. To this end, a preamble sequence detection apparatus according to the present invention comprises: a reference signal generation unit, which receives a first signal having a predetermined value, generates a preamble sequence, performs a discrete Fourier transform, a subcarrier mapping, and an inverse discrete Fourier transform on the generated preamble sequence, and then expands the resultant signal at a set rate to quantize the resultant signal; a PRACH reception unit which receives a PRACH signal transmitted from a terminal; and a correlation unit which detects a correlation between the reference signal received from the reference signal generation unit and a signal received from the PRACH reception unit.
摘要:
The present invention relates to an apparatus and a method for eliminating I/Q offset in a receiver of a SC-FDMA system which improves performance of the system by accurate measurement and cancellation of I/Q offset in a receiver of a SC-FDMA system operating in a 3GPP LTE uplink. An apparatus for eliminating I/Q offset in a receiver of the SC-FDMA system constituting the receiver of the SC-FDMA system includes: a linear interpolation channel estimation unit for estimating channel using demodulation reference symbol (DMRS) that is a training sequence (X) corresponding to the discrete Fourier transformed signal (Y) that has passed through frame sync acquisition, frequency compensation and cyclic prefix elimination; a signal regeneration/cancellation unit for calculating I/Q offset (D=Y−Y′) by subtracting the discrete Fourier transformed signal (Y) from the ideal discrete Fourier transformed signal (Y′=H′X) generated by using channel coefficient (H′), that is an output of the linear interpolation channel estimation unit, and the DMRS that is the training sequence (X); and an I/Q offset measurement/cancellation unit for generating VQ offset-free signal (YNoDC=Y−D′) by subtracting I/Q offset (D′) having corrected phase and power of the VQ offset (D=Y−Y′) from the discrete Fourier transformed signal (Y).
摘要:
The present invention relates to a method for shortening the time taken for physical random access channel (PRACH) signal synchronization and preamble sequence detection in an LTE uplink system, and more particularly, to a method for shortening the time taken for preamble sequence detection using an inverse discrete Fourier transform. To this end, a preamble sequence detection apparatus according to the present invention comprises: a reference signal generation unit, which includes a preamble sequence generation unit for receiving a first signal having a predetermined length and outputting a plurality of second signals having the length of 839, a discrete Fourier transform unit for performing a discrete Fourier transform on the second signals received from the preamble sequence generation unit to transform the second signals into a frequency domain signal, a subcarrier mapping unit for mapping the frequency domain signal outputted from the discrete Fourier transform unit to a subcarrier, and an inverse discrete Fourier transform unit for receiving a signal having the length of 2n from the subcarrier mapping unit and performing an inverse discrete Fourier transform to transform the received signal into a time domain signal having the length of 2n; a PRACH reception unit which receives a PRACH signal transmitted from a terminal; and a second correlation unit which detects a correlation between the reference signal received from the reference signal generation unit and a signal received from the PRACH reception unit.
摘要:
A signal analysis apparatus of an LTE system includes a radio frequency reception unit for receiving a radio frequency signal of the LTE system and converting it into a signal of an intermediate frequency, a digital signal conversion unit for converting an analog signal, processed by the radio frequency reception unit, into a digital signal, a baseband conversion unit for converting the signal of the intermediate frequency into a baseband signal, a baseband signal simple analysis unit for decoding the baseband signal in real time in accordance with an LTE standard, a signal depository for storing the baseband signal, a baseband signal precision analysis unit for decoding and analyzing the baseband signal in accordance with the LTE standard and analyzing various items derived in the decoding process, two switching units for alternatively connecting the baseband conversion unit or the signal depository to the baseband signal simple analysis unit or the baseband signal precision analysis unit, and a control unit for controlling the switching units.