摘要:
A CDMA wireless communication system for communicating with wireless terminals. The system comprises a channel estimator for determining characteristics of the wireless channels of the wireless terminals. The channel characteristics are used by a code optimizer to assign spreading codes to the wireless terminals. In one embodiment, the code optimizer utilizes an iterative code optimization algorithm and maintains a processing set of wireless terminals. The code optimizer chooses target wireless terminals and performs a random code search in order to find an improved code for the target wireless terminal. The improved code found in the random code search is further improved by performing a gradient search of codes in the signal space in the vicinity of the improved code and by performing a gradient search of transmission delays. The improved codes are transmitted to the wireless terminals for use in reverse link communication.
摘要:
The bit rate at which a digital wireless communications system communicates data in scattering environments may be significantly increased by using multiple antennas at both the transmitter and receiver and by decomposing the channel into m subchannels. In the same frequency band, m one dimensional signals are transmitted into a scattering environment which makes these transmitted signals appear spatially independent at the receiver antenna array. The high bit rate is enabled by special receiver processing to maximize the minimum signal-to-noise ratio of the receiver detection process.
摘要:
The Shannon limit governs the ultimate bit rate at which a digital wireless communications system may communicate data. A digital wireless receiver may be enhanced such that it approaches the Shannon limit by decomposing a n-dimensional system into n-one dimensional systems of equal capacity.
摘要:
In a MIMO system the signals transmitted from the various antennas are processed so as to improve the ability of the receiver to extract them from the received signal even in the face of some correlation. More specifically the number of bit streams that is transmitted simultaneously is adjusted, e.g., reduced, depending on the level of correlation, while multiple versions of each bit stream, variously weighted, are transmitted simultaneously. The variously weighted versions are combined to produced one combined weighted signal. The receiver processes the received signals in the same manner as it would have had all the signals reaching the receive antennas been uncorrelated. The weight vectors may be determined by the forward channel transmitter using the channel properties of the forward link which are made known to the transmitter of the forward link by being transmitted from the receiver of the forward link by the transmitter of the reverse link or the weight vectors may be determined by the forward channel transmitter using the channel properties of the forward link and the determined weight vectors are made known to the transmitter of the forward link by being transmitted from the receiver of the forward link by the transmitter of the reverse link. The channel properties used to determine the weight vectors may include the channel response from the transmitter to the receiver and the covariance matrix of noise and interference measured at the receiver.
摘要:
The bit rate at which a digital wireless communications system communicates data in scattering environments may be significantly increased by using multiple antennas at both the transmitter and receiver and by decomposing the channel into m subchannels. In the same frequency band, m one dimensional signals are transmitted into a scattering environment which makes these transmitted signals appear spatially independent at the receive antenna array. The high bit rate is enabled by special receiver processing to maximize the minimum signal-to-noise ratio of the receiver detection process.
摘要:
DC offset cancellation and timing recovery is provided in a homodyne receiver. The homodyne receiver demodulates an RF signal to produce a baseband signal. An initial offset correction module determines an initial DC offset of the baseband signal. An initial offset correction is applied to the baseband signal to provide an initial corrected baseband signal. Wherein, a dynamic DC offset correction module determines a dynamic DC offset. A dynamic DC offset correction is applied to the initial corrected baseband signal providing a dynamic corrected baseband signal. A timing signal is acquired from the baseband signal for synchronizing the receiver to a transmitter. A method for correcting DC offset of a baseband signal in a homodyne receiver is also described.