Abstract:
A method for producing a lubricant feed in an axial bearing, wherein the lubricant feed is designed as a channel guiding lubricant from a lubricant pocket of the axial bearing, includes the following steps: preparing an initial axial bearing mold, stamping a groove in the area of the initial mold in which the channel is planned; embossing and putting through material on at least one or both sides of the groove along at least one segment of the groove; stamping the material on the side of the groove toward the groove so that the material and the groove form the channel.
Abstract:
A controlling device with a sensor for the detection of a position of a window pane of the window lifter depending on a driving motion of an actuation is provided. The position signals generated by the sensor, for example by a path sensor or rotary pulse sensor, concern thereby the position of the window pane. Position signals are for example gained from a waviness of a driving power of a mechanically commuted electromotor. The sensor signals can thereby be evaluated by the controlling device. The controlling device includes an analogue or a digital computer unit which provides a function for the combined evaluation of the current position of the window pane and a condition of a roof of the motor vehicle. The evaluation can thereby occur for example by a respective logical circuit as computer unit, by a hard-wired program logic as computer unit or by a programmable computer unit.
Abstract:
An axial bearing for a turbocharger contains a through hole for a shaft and at least one at least partially or completely circulating segment section on a first and second side of the axial bearing. At least one bearing surface is disposed in the segment section. At least one oil pocket is on the first side of the axial bearing. The oil pocket is connected to at least one recess opening outwards, the recess being configured such that it connects the oil pocket for oil supply purposes to the respective segment section and the bearing surface(s) thereof on the first and second side of the axial bearing.
Abstract:
A turbocharger has a turbocharger housing and a through opening for a shaft. The shaft is pivotally supported in the housing by way of a bearing arrangement. Lubricating oil is supplied for lubricating the bearings. A section of the shaft is provided on the outside of at least one bearing, the section forming a gap together with the housing. The gap is configured as a lubricating oil regulator in order to at least reduce a passage of lubricating oil from the sides of the bearing.
Abstract:
A turbocharger has a turbocharger housing with a bearing housing and at least one impeller housing. The bearing housing and the impeller housing are screwed together by way of a screw anchor connection, and at least one head of an anchor of the screw anchor connection is covered by a cover element.
Abstract:
The invention relates to an axial bearing (10) comprising at least one or more segments (18) on each of the front side (22) and the rear side (26) thereof, wherein the segments (18) on the opposite sides (22, 26) each are disposed at least partially offset from each other.
Abstract:
A method for producing a lubricant feed in an axial bearing, wherein the lubricant feed is designed as a channel guiding lubricant from a lubricant pocket of the axial bearing, includes the following steps: preparing an initial axial bearing mold, stamping a groove in the area of the initial mold in which the channel is planned; embossing and putting through material on at least one or both sides of the groove along at least one segment of the groove; stamping the material on the side of the groove toward the groove so that the material and the groove form the channel.
Abstract:
A turbocharger, which is particularly suitable for a motor vehicle, includes: a rotor shaft with a turbine impeller and a compressor impeller disposed thereon. The rotor shaft has a roller bearing assembly for mounting in the housing of the turbocharger.
Abstract:
An axial bearing for a turbocharger contains a through hole for a shaft and at least one at least partially or completely circulating segment section on a first and second side of the axial bearing. At least one bearing surface is disposed in the segment section. At least one oil pocket is on the first side of the axial bearing. The oil pocket is connected to at least one recess opening outwards, the recess being configured such that it connects the oil pocket for oil supply purposes to the respective segment section and the bearing surface(s) thereof on the first and second side of the axial bearing.
Abstract:
A turbocharger for a motor vehicle has a compressor housing, a turbine housing, a bearing housing, and at least one flange on the compressor side. The turbine housing is force-locked with the bearing housing by way of a fastening element that is arranged on the flange on the compressor side, thereby allowing the complete automatic assembly of the turbocharger.