摘要:
An arrangement for delivering gasses from can combustors of a can annular gas turbine combustion engine to a turbine first stage section including a first row of turbine blades, the arrangement including a flow-directing structure for each combustor, wherein each flow-directing structure includes a straight path and an annular chamber end, wherein the annular chamber ends together define an annular chamber for delivering the gas flow to the turbine first stage section, wherein gasses flow from respective combustors, through respective straight paths, and into the annular chamber as respective straight gas flows, and wherein the annular chamber is configured to unite the respective straight gas flows along respective shear planes to form a singular annular gas flow, and wherein the annular chamber is configured to impart circumferential motion to the singular annular gas flow before the singular annular gas flow exits the annular chamber to the first row of blades.
摘要:
An arrangement for delivering gasses from can combustors of a can annular gas turbine combustion engine to a turbine first stage section including a first row of turbine blades, the arrangement including a flow-directing structure for each combustor, wherein each flow-directing structure includes a straight path and an annular chamber end, wherein the annular chamber ends together define an annular chamber for delivering the gas flow to the turbine first stage section, wherein gasses flow from respective combustors, through respective straight paths, and into the annular chamber as respective straight gas flows, and wherein the annular chamber is configured to unite the respective straight gas flows along respective shear planes to form a singular annular gas flow, and wherein the annular chamber is configured to impart circumferential motion to the singular annular gas flow before the singular annular gas flow exits the annular chamber to the first row of blades.
摘要:
An arrangement (10) for conveying combustion gas from a plurality of can annular combustors to a turbine first stage blade section of a gas turbine engine, the arrangement (10) including a plurality of interconnected integrated exit piece (IEP) sections (16) defining an annular chamber (18) oriented concentric to a gas turbine engine longitudinal axis (20) upstream of the turbine first stage blade section. Each respective IEP (16) includes a first flow path section (40) receiving and fully bounding a first flow from a respective can annular combustor along a respective common axis (22) there between, and delivering a partially bounded first flow to a downstream adjacent IEP section (42). Each respective IEP further includes a second flow path section (112) receiving a partially bounded second flow from an upstream adjacent IEP (66) and delivering at least part of the second flow to the turbine first stage blade section.
摘要:
An arrangement (10) for conveying combustion gas from a plurality of can annular combustors to a turbine first stage blade section of a gas turbine engine, the arrangement (10) including a plurality of interconnected integrated exit piece (IEP) sections (16) defining an annular chamber (18) oriented concentric to a gas turbine engine longitudinal axis (20) upstream of the turbine first stage blade section. Each respective IEP (16) includes a first flow path section (40) receiving and fully bounding a first flow from a respective can annular combustor along a respective common axis (22) there between, and delivering a partially bounded first flow to a downstream adjacent IEP section (42). Each respective IEP further includes a second flow path section (112) receiving a partially bounded second flow from an upstream adjacent IEP (66) and delivering at least part of the second flow to the turbine first stage blade section.
摘要:
An exit piece (66) with an inlet throat (67) that conducts a combustion gas flow (36A) in a path (82) from a combustor (63) to an annular chamber (68) that feeds the first blade section (37) of a gas turbine (26). The exit piece further includes an outlet portion (69) that forms a circumferential segment of the annular chamber. The outlet portion interconnects with adjacent outlet portions by hinges (78A, 78B, 80A, 80B). Each hinge may have a hinge axis (82A, 82B) parallel to a centerline (21) of the turbine. Respective gas flows (36A) are configured by an assembly (60) of the exit pieces to converge on the feed chamber (68) into a uniform helical flow that drives the first blade section with minimal circumferential variations in force.
摘要:
A gas turbine engine can-annular combustion arrangement (10), including: an axial compressor (82) operable to rotate in a rotation direction (60); a diffuser (100, 110) configured to receive compressed air (16) from the axial compressor; a plenum (22) configured to receive the compressed air from the diffuser; a plurality of combustor cans (12) each having a combustor inlet (38) in fluid communication with the plenum, wherein each combustor can is tangentially oriented so that a respective combustor inlet is circumferentially offset from a respective combustor outlet in a direction opposite the rotation direction; and an airflow guiding arrangement (80) configured to impart circumferential motion to the compressed air in the plenum in the direction opposite the rotation direction.
摘要:
A casing for a can annular gas turbine engine, including: a compressed air section (40) spanning between a last row of compressor blades (26) and a first row of turbine blades (28), the compressed air section (40) having a plurality of openings (50) there through, wherein a single combustor/advanced duct assembly (64) extends through each opening (50); and one top hat (68) associated with each opening (50) configured to enclose the associated combustor/advanced duct assembly (64) and seal the opening (50). A volume enclosed by the compressed air section (40) is not greater than a volume of a frustum (54) defined at an upstream end (56) by an inner diameter of the casing at the last row of compressor blades (26) and at a downstream end (60) by an inner diameter of the casing at the first row of turbine blades (28).
摘要:
A can annular industrial gas turbine engine, including: a single-piece rotor shaft spanning a compressor section (82), a combustion section (84), a turbine section (86); and a combustion section casing (10) having a section (28) configured as a full hoop. When the combustion section casing is detached from the engine and moved to a maintenance position to allow access to an interior of the engine, a positioning jig (98) is used to support the compressor section casing (83) and turbine section casing (87).
摘要:
A turbine vane attachment system configured to eliminate movement of a turbine vane relative to a turbine vane carrier. The turbine vane attachment system may include a base attached to a turbine airfoil. The base may be configured to contact a wedge support along a plane that is generally nonparallel and nonorthogonal with a longitudinal axis of the airfoil. A bolt may connect the base with the wedge support. The bolt may change a distance between a channel in the base and an outer bearing surface. The turbine vane may be positioned in a vane carrier such that tongues extending from the vane carrier are positioned in the channels. As the bolt is advanced, the wedge support is moved laterally along the support surface of the base and the channels engage the tongues, thereby preventing movement of the turbine vane.
摘要:
A gas turbine engine ducting arrangement (10), including: an annular chamber (14) configured to receive a plurality of discrete flows of combustion gases originating in respective can combustors and to deliver the discrete flows to a turbine inlet annulus, wherein the annular chamber includes an inner diameter (52) and an outer diameter (60); an outer diameter mounting arrangement (34) configured to permit relative radial movement and to prevent relative axial and circumferential movement between the outer diameter and a turbine vane carrier (20); and an inner diameter mounting arrangement (36) including a bracket (64) secured to the turbine vane carrier, wherein the bracket is configured to permit the inner diameter to move radially with the outer diameter and prevent axial deflection of the inner diameter with respect to the outer diameter.