摘要:
The system described ultrasonically images a target with energy spreading transmissions. Generally, ultrasonic energy corresponding to a line focus is transmitted into a target at a fundamental center frequency. The target may or may not include contrast agents. In either case, echoes are received at a harmonic of the fundamental center frequency. Echoes are also received at the fundamental center frequency. The echoes received at the harmonic center frequency are efficiently compounding with the echoes received at the fundamental center frequency.
摘要:
An ultrasonic receive beamformer includes transducers forming receive signals that are applied to sub-array processors. Each sub-array processor includes at least one phase shifter and a summer, and each phase shifter is responsive to at least one of the transducer signals to shift the transducer signal by a respective phase angle and to apply the phase shifted transducer signals to the summer. Each of the summers supplies a summed sub-array signal to a respective beamformer processor. The phase angles for any one of the sub-array processors form a sum substantially equal to zero. Furthermore, the phase angles for any one of the sub-array processors are independent of the time delay of the respective digital beamformer processor. The time resolution of the time delay of the digital beamformer processors is substantially as fine as the time resolution of the phase angles of the phase shifters. The phase angles of the phase shifters are updated at a slower rate than the focusing update rate of the beamformer processors. Quadrature filter network and heterodyning circuit implementations of the phase shifters are disclosed.
摘要:
A method and an apparatus are provided for dynamic, real-time adaptive focusing for ultrasound imaging. Aberration delay correction values, corresponding to an aberration region in an imaged subject, are measured concurrently during B-mode imaging scan lines and updated at the scan line rate. The measured aberration delay correction values are then applied concurrently to correct the focus of all transmitted and received ultrasound scan lines, regardless of the imaging mode, scan geometry, or imaging frequencies.
摘要:
An ultrasonic receive beamformer includes transducers forming receive signals that are applied to sub-array processors. Each sub-array processor includes at least one phase shifter and a summer, and each phase shifter is responsive to at least one of the transducer signals to shift the transducer signal by a respective phase angle and to apply the phase shifted transducer signals to the summer. Each of the summers supplies a summed sub-array signal to a respective beamformer processor. The phase angles for any one of the sub-array processors form a sum substantially equal to zero. Furthermore, the phase angles for any one of the sub-array processors are independent of the time delay of the respective digital beamformer processor. The time resolution of the time delay of the digital beamformer processors is substantially as fine as the time resolution of the phase angles of the phase shifters. The phase angles of the phase shifters are updated at a slower rate than the focusing update rate of the beamformer processors. Quadrature filter network and heterodyning circuit implementations of the phase shifters are disclosed.
摘要:
An ultrasonic receive system includes two receive beamformers. A first receive beamformer is optimized for imaging modes such as B-mode and color Doppler flow imaging, and therefore has high spatial resolution and wide bandwidth, while the accompanying second receive beamformer has a wide dynamic range and is dedicated for use in acquiring spectral Doppler information, which is typically narrowband compared to imaging information. The second receive beamformer achieves the sensitivity and low-noise performance of a dedicated single-channel pencil probe instrument yet it also performs electronic beam steering. Both receive beamformers can operate through a common transducer array, thereby increasing exam efficiency and permitting registration of spectral Doppler information with a B-mode or color Doppler flow image.
摘要:
Method for scanning a field of view using a scan format, wherein the carrier frequency of the imaging pulse is higher in the center of the field of view than at the edges. The frequency variation can be accomplished on transmit by modulating appropriately delayed programmable initial waveform information samples with a programmable carrier frequency. This results in a pulse transmitted into the body whose frequency is highest in the center portion of the scan, and is reduced in a controlled fashion as the steering angle is increased in order to mitigate grating lobe artifacts. The technique preserves signal energy because modulation merely translates the signal in frequency substantially without modification of the pulse shape itself. The technique is also useful on receive, wherein demodulation to or near baseband followed by post-beamformation pre-detection remodulation can correct for systematic scan-line-to-scan-line phase variations to ensure scan-line-to-scan-line phase coherency for subsequent coherent processing across scan lines or for coherent image formation using the phase and amplitude information from multiple beams.
摘要:
A medical diagnostic ultrasonic imaging system acquires receive beams from spatially distinct transmit beams. The receive beams alternate in type between at least first and second types across the region being imaged. The first and second types of receive beams differ in at least one scan parameter other than transmit and receive line geometry, and can for example differ in transmit phase, transmit or receive aperture, system frequency, transmit focus, complex phase angle, transmit code or transmit gain. Receive beams associated with spatially distinct ones of the transmit beams (including at least one beam of the first type and at least one beam of the second type) are then combined. In this way, many two-pulse techniques, including, for example, phase inversion techniques, synthetic aperture techniques, synthetic frequency techniques, and synthetic focus techniques, can be used while substantially reducing the frame rate penalty normally associated with such techniques.
摘要:
A transmit beamformer includes multiple transducers, each responsive to a respective transmit waveform to produce a respective transducer waveform. A transmit waveform generator generates the transmit waveforms, and the transmit waveforms each include multiple frequency components. Progressively higher frequency components of the transmit waveforms are timed to cause corresponding progressively higher frequency components of the transducer waveforms to focus along a line at progressively shorter ranges. In this way, a frequency dependent line focus is achieved.
摘要:
A transmit beamformer includes multiple transducers, each responsive to a respective transmit waveform to produce a respective transducer waveform. A transmit waveform generator generates the transmit waveforms, and the transmit waveforms each include multiple frequency components. Progressively higher frequency components of the transmit waveforms are timed to cause corresponding progressively higher frequency components of the transducer waveforms to focus along a line at progressively shorter ranges. In this way, a frequency dependent line focus is achieved.
摘要:
A medical diagnostic ultrasonic imaging system acquires receive beams from spatially distinct transmit beams. The receive beams alternate in type between at least first and second types across the region being imaged. The first and second types of receive beams differ in at least one scan parameter other than transmit and receive line geometry, and can for example differ in transmit phase, transmit or receive aperture, system frequency, transmit focus, complex phase angle, transmit code or transmit gain. Receive beams associated with spatially distinct ones of the transmit beams (including at least one beam of the first type and at least one beam of the second type) are then combined. In this way, many two-pulse techniques, including, for example, phase inversion techniques, synthetic aperture techniques, synthetic frequency techniques, and synthetic focus techniques, can be used while substantially reducing the frame rate penalty normally associated with such techniques.