Parallel machine architecture for production rule systems
    1.
    发明授权
    Parallel machine architecture for production rule systems 失效
    用于生产规则系统的并行机架构

    公开(公告)号:US4837735A

    公开(公告)日:1989-06-06

    申请号:US059976

    申请日:1987-06-09

    IPC分类号: G06F9/44 G06N5/04

    CPC分类号: G06N5/046 G06F8/45

    摘要: A parallel processing system for production rule programs utilizes a host processor for storing production rule right hand sides (RHS) and a plurality of rule processors for storing left hand sides (LHS). The rule processors operate in parallel in the recognize phase of the system recognize -Act Cycle to match their respective LHS's against a stored list of working memory elements (WME) in order to find a self consistent set of WME's. The list of WME is dynamically varied during the Act phase of the system in which the host executes or fires rule RHS's for those rules for which a self-consistent set has been found by the rule processors. The host transmits instructions for creating or deleting working memory elements as dictated by the rule firings until the rule processors are unable to find any further self-consistent working memory element sets at which time the production rule system is halted.

    摘要翻译: 用于生产规则程序的并行处理系统利用主机处理器来存储生产规则右手侧(RHS)和用于存储左手侧(LHS)的多个规则处理器。 规则处理器在系统的识别阶段中并行操作,识别-Act周期以使其相应的LHS与存储的工作存储元件(WME)列表匹配,以便找到自相矛盾的WME集合。 在系统的Act阶段期间,WME的列表是动态变化的,其中主机执行或触发规则处理器已经找到自相矛盾集合的规则的规则RHS。 主机根据规则启动发送创建或删除工作存储器元件的指令,直到规则处理器无法找到生产规则系统停止的任何其他自定义工作存储器元件集合。

    Method and apparatus for solving complex and computationally intensive inverse problems in real-time
    2.
    发明授权
    Method and apparatus for solving complex and computationally intensive inverse problems in real-time 失效
    实时解决复杂和计算密集型逆问题的方法和装置

    公开(公告)号:US06208982B1

    公开(公告)日:2001-03-27

    申请号:US08903068

    申请日:1997-07-30

    IPC分类号: G06F1516

    CPC分类号: G06F17/50

    摘要: The system of the present invention may “solve” a variety of inverse physical problem types by using neural network techniques. In operation, the present invention may generate data sets characterizing a particular starting condition of a physical process (such as data sets characterizing the parameters of an initial metal die), based upon an ending condition of the physical process (such as the parameters of the metal part to be stamped by the die). In one embodiment, the system of the present invention may generate a plurality of training data sets, each training data set characterizing a sample ending condition, the physical process that results in the sample ending condition, and a sample starting condition of the physical process. The training data sets may then be applied to a neural network so as to train the network. A network definition associated with the trained neural network may be stored, and an ending data set characterizing an ending condition of the physical process may be generated. A starting data set characterizing a starting condition of the physical process may thereafter be generated based upon the stored network definition and the ending data set.

    摘要翻译: 本发明的系统可以通过使用神经网络技术来“解决”各种逆物理问题类型。 在操作中,本发明可以基于物理处理的结束条件(例如,第一个金属裸片的参数)来生成表征物理处理的特定起始条件(诸如表征初始金属管芯的参数的数据集)的数据集 金属部分被模具冲压)。 在一个实施例中,本发明的系统可以生成多个训练数据集,表征样本结束条件的每个训练数据集,导致样本结束条件的物理过程以及物理过程的采样开始条件。 然后可以将训练数据集应用于神经网络,以便训练网络。 可以存储与经训练的神经网络相关联的网络定义,并且可以生成表征物理过程的结束条件的结束数据集。 此后可以基于存储的网络定义和结束数据集来生成表征物理处理的起始条件的起始数据集。

    Neural network control of spot welding
    3.
    发明授权
    Neural network control of spot welding 失效
    点焊神经网络控制

    公开(公告)号:US6018729A

    公开(公告)日:2000-01-25

    申请号:US932439

    申请日:1997-09-17

    CPC分类号: G05B13/027

    摘要: A spot welder comprises a neural network for processing, in real time, current and voltage energizing a weld in progress. The neural network generates a predicted time of optimal weld strength and/or nugget size for the weld in progress. A controller terminates the weld in progress at the predicted time. A method for controlling a spot welder comprises the steps of: sensing in real time current and voltage energizing a spot weld in progress; predicting a time of optimal weld strength and/or nugget size with a neural network responsive to the sensed current and voltage; and, terminating the weld in progress at the predicted time. A sensor for electromotive forces (EMF) induced by the spot welder can generate a signal for canceling out a large fraction of EMF components in at least one or both of the current and voltage signals. EMF components are substantially precluded in the current signal if the current sensor uses a buried shunt. Termination of the weld in progress at the predicted time is prevented when the predicted time precedes a predetermined minimum weld duration. The weld in progress is terminated at a predetermined maximum weld duration when the predicted time is after the predetermined maximum weld duration.

    摘要翻译: 点焊机包括一个神经网络,用于实时处理正在进行焊接的电流和电压。 神经网络产生焊缝正在进行的最佳焊接强度和/或熔核尺寸的预测时间。 控制器在预测时间终止正在进行的焊接。 点焊机的控制方法包括以下步骤:实时检测电流和电压对正在进行的点焊通电; 使用响应于感测的电流和电压的神经网络预测最佳焊接强度和/或熔核尺寸的时间; 并且在预测的时间终止正在进行的焊接。 由点焊机引起的用于电动势(EMF)的传感器可以产生用于在至少一个或两个电流和电压信号中消除大部分EMF分量的信号。 如果电流传感器使用埋地分流器,EMF组件在电流信号中基本排除。 当预测时间在预定的最小焊接持续时间之前时,防止在预测时间内正在进行焊接的终止。 当预测时间在预定的最大焊接持续时间之后时,正在进行的焊接在预定的最大焊接持续时间终止。

    Method and apparatus for controlling textile working systems employing
NMR detector
    5.
    发明授权
    Method and apparatus for controlling textile working systems employing NMR detector 失效
    使用NMR检测器控制纺织工作系统的方法和装置

    公开(公告)号:US4267620A

    公开(公告)日:1981-05-19

    申请号:US934536

    申请日:1978-08-17

    CPC分类号: G01N24/085 D01H5/38

    摘要: The present disclosure relates to a method and apparatus for controlling textile working systems such as drafting frames. A detector is provided for detecting variations in the numbers of specific types of atoms, such as hydrogen atoms, in a known length of a traveling fibrous strand being worked by the drafting frame or other textile working device. System parameters, such as the draft imparted to the strand, may be varied in response to the detected variations.

    摘要翻译: 本公开涉及一种用于控制诸如起草框架的纺织品工作系统的方法和装置。 提供了一种检测器,用于检测已知长度的由牵伸框架或其它纺织品加工装置加工的行进纤维束的特定类型的原子数量(例如氢原子)的变化。 响应于检测到的变化,可以改变系统参数,例如赋予链的草图。