摘要:
Embodiments of the present invention provide a method and a module for identifying a background of a scene depicted in an acquired stream of video frames that may be used by a video-analysis system. For each pixel or block of pixels in an acquired video frame a comparison measure is determined. The comparison measure depends on difference of color values exhibited in the acquired video frame and in a background image respectively by the pixel or block of pixels and a corresponding pixel and block of pixels in the background image. To determine the comparison measure, the resulting difference is considered in relation to a range of possible color values. If the comparison measure is above a dynamically adjusted threshold, the pixel or the block of pixels is classified as a part of the background of the scene.
摘要:
Embodiments of the present invention provide a method and a system for analyzing and learning behavior based on an acquired stream of video frames. Objects depicted in the stream are determined based on an analysis of the video frames. Each object may have a corresponding search model used to track an object's motion frame-to-frame. Classes of the objects are determined and semantic representations of the objects are generated. The semantic representations are used to determine objects' behaviors and to learn about behaviors occurring in an environment depicted by the acquired video streams. This way, the system learns rapidly and in real-time normal and abnormal behaviors for any environment by analyzing movements or activities or absence of such in the environment and identifies and predicts abnormal and suspicious behavior based on what has been learned.
摘要:
Embodiments of the present invention provide a method and a module for identifying a background of a scene depicted in an acquired stream of video frames that may be used by a video-analysis system. For each pixel or block of pixels in an acquired video frame a comparison measure is determined. The comparison measure depends on difference of color values exhibited in the acquired video frame and in a background image respectively by the pixel or block of pixels and a corresponding pixel and block of pixels in the background image. To determine the comparison measure, the resulting difference is considered in relation to a range of possible color values. If the comparison measure is above a dynamically adjusted threshold, the pixel or the block of pixels is classified as a part of the background of the scene.
摘要:
Embodiments of the present invention provide a method and a module for identifying a background of a scene depicted in an acquired stream of video frames that may be used by a video-analysis system. For each pixel or block of pixels in an acquired video frame a comparison measure is determined. The comparison measure depends on difference of color values exhibited in the acquired video frame and in a background image respectively by the pixel or block of pixels and a corresponding pixel and block of pixels in the background image. To determine the comparison measure, the resulting difference is considered in relation to a range of possible color values. If the comparison measure is above a dynamically adjusted threshold, the pixel or the block of pixels is classified as a part of the background of the scene.
摘要:
Embodiments of the present invention provide a method and a system for mapping a scene depicted in an acquired stream of video frames that may be used by a machine-learning behavior-recognition system. A background image of the scene is segmented into plurality of regions representing various objects of the background image. Statistically similar regions may be merged and associated. The regions are analyzed to determine their z-depth order in relation to a video capturing device providing the stream of the video frames and other regions, using occlusions between the regions and data about foreground objects in the scene. An annotated map describing the identified regions and their properties is created and updated.
摘要:
Embodiments of the present invention provide a method and a system for analyzing and learning behavior based on an acquired stream of video frames. Objects depicted in the stream are determined based on an analysis of the video frames. Each object may have a corresponding search model used to track an object's motion frame-to-frame. Classes of the objects are determined and semantic representations of the objects are generated. The semantic representations are used to determine objects' behaviors and to learn about behaviors occurring in an environment depicted by the acquired video streams. This way, the system learns rapidly and in real-time normal and abnormal behaviors for any environment by analyzing movements or activities or absence of such in the environment and identifies and predicts abnormal and suspicious behavior based on what has been learned.
摘要:
A tracker component for a computer vision engine of a machine-learning based behavior-recognition system is disclosed. The behavior-recognition system may be configured to learn, identify, and recognize patterns of behavior by observing a video stream (i.e., a sequence of individual video frames). The tracker component may be configured to track objects depicted in the sequence of video frames and to generate, search, match, and update computational models of such objects.
摘要:
Embodiments of the present invention provide a method and a system for mapping a scene depicted in an acquired stream of video frames that may be used by a machine-learning behavior-recognition system. A background image of the scene is segmented into plurality of regions representing various objects of the background image. Statistically similar regions may be merged and associated. The regions are analyzed to determine their z-depth order in relation to a video capturing device providing the stream of the video frames and other regions, using occlusions between the regions and data about foreground objects in the scene. An annotated map describing the identified regions and their properties is created and updated.
摘要:
Embodiments of the present invention provide a method and a system for mapping a scene depicted in an acquired stream of video frames that may be used by a machine-learning behavior-recognition system. A background image of the scene is segmented into plurality of regions representing various objects of the background image. Statistically similar regions may be merged and associated. The regions are analyzed to determine their z-depth order in relation to a video capturing device providing the stream of the video frames and other regions, using occlusions between the regions and data about foreground objects in the scene. An annotated map describing the identified regions and their properties is created and updated.
摘要:
Embodiments of the present invention provide a method and a module for identifying a background of a scene depicted in an acquired stream of video frames that may be used by a video-analysis system. For each pixel or block of pixels in an acquired video frame a comparison measure is determined. The comparison measure depends on difference of color values exhibited in the acquired video frame and in a background image respectively by the pixel or block of pixels and a corresponding pixel and block of pixels in the background image. To determine the comparison measure, the resulting difference is considered in relation to a range of possible color values. If the comparison measure is above a dynamically adjusted threshold, the pixel or the block of pixels is classified as a part of the background of the scene.