摘要:
A hand-held programmer/monitor (500) for programming and monitoring an implantable tissue growth stimulator (10) is provided. The stimulator (10) includes circuitry (46) for implementing selected operations in response to a down-link signal transmitted by the programmer/monitor (500). The stimulator (10) also includes circuitry (14) for transmitting up-link signals to the programmer/monitor (500). The programmer/monitor (500) includes a control circuit (518) for generating the down-link signal. The control circuit (518) also processes the up-link signal to monitor the status of the implantable tissue growth stimulator (10). The programmer/monitor (500) also includes a transmit/receive circuit (514) for transmitting the down-link signal to and for receiving the up-link signal from the implantable tissue growth stimulator (10). The transmit/receive circuit (514) also couples the up-link signal to the control circuit (518).
摘要:
A method for the therapeutic stimulation of bone growth of a bone site is disclosed comprising the steps of implanting first and second electrodes into the tissue near the base site. The electrodes are coupled to a bone growth stimulator which generates an alternating current.
摘要:
A hand-held programmer/monitor (500) for programming and monitoring an implantable tissue growth stimulator (10) is provided. The stimulator (10) includes circuitry (46) for implementing selected operations in response to a down-link signal transmitted by the programmer/monitor (500). The stimulator (10) also includes circuitry (46) for transmitting up-link signals to the programmer/monitor (500). The programmer/monitor (500) includes a control circuit (518) for generating the down-link signal. The control circuit (518) also processes the up-link signal to monitor the status of the implantable tissue growth stimulator (10). The programmer/monitor (500) also includes a transmit/receive circuit (514) for transmitting the down-link signal to and for receiving the up-link signal from the implantable tissue growth stimulator (10). The transmit/receive circuit (514) also couples the up-link signal to the control circuit (518).
摘要:
Disclosed are systems and methods which provide voltage conversion in increments less than integer multiples of a power supply (e.g., battery) voltage. A representative embodiment provides power supply voltage multipliers in a binary ladder distribution to provide a desired number of output voltage steps using a relatively uncomplicated circuit design. By using different sources in various combinations and/or by “stacking” different sources in various ways, the voltage multiplier circuit may be used to provide desired voltages. In order to minimize the number of components used in a voltage converter of an embodiment, a capacitive voltage converter circuit uses one or more storage capacitors in place of pump capacitors in a voltage generation cycle. Also, certain embodiments do not operate to generate an output voltage until the time that voltage is needed.
摘要:
In one embodiment, an implantable medical device comprises: a rechargeable battery for powering the implantable medical device; an antenna for receiving RF power; and circuitry for charging the rechargeable battery using power received via the antenna, wherein the circuitry for charging comprises control circuitry that causes the circuitry for charging to recharge the rechargeable battery using multiple current levels applied in succession, and wherein the circuitry for charging switches from at least one of the current levels to another current level when a charging voltage of the rechargeable battery reaches a threshold value that is varied by the control circuitry over a lifespan of the rechargeable battery.
摘要:
Disclosed are systems and methods which provide voltage conversion in increments less than integer multiples of a power supply (e.g., battery) voltage. A representative embodiment provides power supply voltage multipliers in a binary ladder distribution to provide a desired number of output voltage steps using a relatively uncomplicated circuit design. By using different sources in various combinations and/or by “stacking” different sources in various ways, the voltage multiplier circuit may be used to provide desired voltages. In order to minimize the number of components used in a voltage converter of an embodiment, a capacitive voltage converter circuit uses one or more storage capacitors in place of pump capacitors in a voltage generation cycle. Also, certain embodiments do not operate to generate an output voltage until the time that voltage is needed.
摘要:
Disclosed are systems and methods which provide voltage conversion in increments less than integer multiples of a power supply (e.g., battery) voltage. A representative embodiment provides power supply voltage multipliers in a binary ladder distribution to provide a desired number of output voltage steps using a relatively uncomplicated circuit design. By using different sources in various combinations and/or by “stacking” different sources in various ways, the voltage multiplier circuit may be used to provide desired voltages. In order to minimize the number of components used in a voltage converter of an embodiment, a capacitive voltage converter circuit uses one or more storage capacitors in place of pump capacitors in a voltage generation cycle. Also, certain embodiments do not operate to generate an output voltage until the time that voltage is needed.
摘要:
A device and method for generating electrical stimulation. The implantable device includes a programmable switching device or array that receives at least one pulse generator output coupled through at least one coupling capacitor. The switching device selectively connects at least one pulse generator output to a plurality of electrode terminals via at least one coupling capacitor. Electrical stimulation signals may be applied directly from the electrode terminals, or are applied through a lead or lead extension having corresponding electrodes electrically connected to the electrode terminals.
摘要:
A PEMF contoured triangular transducer system (FIG. 1a-1b) used for PEMF therapy (such as after spinal fusion) uses a two-transducer configuration for generating flux-aided electromagnetic fields. The semi-rigid transducers (12, 14) are conformable to a selected anatomical contour, and incorporated with an adjustable belt (16) to provide bracing. The belt includes compartments for a drive electronics module (22), and a rechargeable battery pack (24), making the system portable. The drive electronics (FIG. 3) includes a PEMF processor (41) that executes a PEMF program for providing pulsing current to the front and back transducers at predetermined intervals, thereby activating the electromagnetic field according to a prescribed PEMF regimen.