摘要:
To achieve peak acoustic and power performance, the coil or applied current should be in phase or substantially aligned with the back electromotive force (back-EMF) voltage. However, there are generally phase differences between the applied current and back-EMF voltage that are induced by the impedance of the brushless DC motor (which can vary based on conditions, such as temperature and motor speed). Traditionally, compensation for these phase differences was provided manually and on an as-needed basis. Here, however, a system and method are provided that automatically perform a commutation advance by incrementally adjusting a drive signal over successive commutation cycles when the applied current and back-EMF voltage are misaligned.
摘要:
To achieve peak acoustic and power performance, the coil or applied current should be in phase or substantially aligned with the back electromotive force (back-EMF) voltage. However, there are generally phase differences between the applied current and back-EMF voltage that are induced by the impedance of the brushless DC motor (which can vary based on conditions, such as temperature and motor speed). Traditionally, compensation for these phase differences was provided manually and on an as-needed basis. Here, however, a system and method are provided that automatically perform a commutation advance by incrementally adjusting a drive signal over successive commutation cycles when the applied current and back-EMF voltage are misaligned.
摘要:
Traditionally, controllers for brushless, sensorless direct current (DC) motors (in, for example, Hard Disk Drive applications) would use one of the phases of the DC motor to measure a back electromotive force (back-EMF) voltage. This measurement would generally cause a discontinuity in the current waveform for a motor operating at a generally constant rotational speed (i.e., at “run speed”), which would result in poor acoustic performance (i.e., audible hum). Here, however, an integrated circuit (IC) is provided that uses coil current and applied voltage measurements to substantially maintain a predetermined phase difference between the phase of the applied voltage and back-EMF voltage, eliminating the need for a back-EMF voltage measurement and improving the acoustic performance.
摘要:
The present invention provides a bipolar radiofrequency ablation catheter comprising a working catheter and a magnetic catheter. The magnetic catheter comprises a first tube; a magnet; a first electrode; and a first electrode connector, and the working catheter comprises a second tube; a metallic element; a second electrode; and a second electrode connector. According to the present invention, it is possible to create transmural lesions more completely and easily at a thick myocardial region such as left ventricle in which a transmural lesion could not be easily created by using conventional radiofrequency ablation catheters and thus it is expected to increase the treatment efficiency for tachycardia such as ventricular tachycardia and atrial fibrillation.
摘要:
The present invention provides a bipolar radiofrequency ablation catheter comprising a working catheter and a magnetic catheter. The magnetic catheter comprises a first tube; a magnet; a first electrode; and a first electrode connector, and the working catheter comprises a second tube; a metallic element; a second electrode; and a second electrode connector. According to the present invention, it is possible to create transmural lesions more completely and easily at a thick myocardial region such as left ventricle in which a transmural lesion could not be easily created by using conventional radiofrequency ablation catheters and thus it is expected to increase the treatment efficiency for tachycardia such as ventricular tachycardia and atrial fibrillation.