摘要:
Methods, techniques, computer program products, apparatus, devices, etc., used in connection with DSL Management Interfaces, significantly improve the management capabilities of a DSL network and/or improve testing relating to DSL equipment and services by permitting better control and operation of a DSL system, including implementation of timestamping for more accurate measurement, monitoring and control of a system. Timestamping further allows customized data collection techniques, where a DSL line can be measured or monitored at intervals whose frequency depends on the line's stability. Moreover, data parameter read and control parameter write operations are presented in conjunction with the use of timestamping. Also, control and operation of a DSL system is enhanced by implementing bit-loading that minimizes, eliminates or otherwise mitigates the amount by which the SNR margin per tone exceeds a maximum SNR margin quantity, where such bit-loading can be selected through an appropriate interface.
摘要:
Methods, techniques, computer program products, apparatus, devices, etc., used in connection with DSL Management Interfaces, significantly improve the management capabilities of a DSL network and/or improve testing relating to DSL equipment and services by permitting better control and operation of a DSL system, including implementation of timestamping for more accurate measurement, monitoring and control of a system. Timestamping further allows customized data collection techniques, where a DSL line can be measured or monitored at intervals whose frequency depends on the line's stability. Moreover, data parameter read and control parameter write operations are presented in conjunction with the use of timestamping. Also, control and operation of a DSL system is enhanced by implementing bit-loading that minimizes, eliminates or otherwise mitigates the amount by which the SNR margin per tone exceeds a maximum SNR margin quantity, where such bit-loading can be selected through an appropriate interface.
摘要:
Methods, techniques, computer program products, apparatus, devices, etc., used in connection with DSL Management Interfaces, significantly improve the management capabilities of a DSL network and/or improve testing relating to DSL equipment and services by permitting better control and operation of a DSL system, including implementation of timestamping for more accurate measurement, monitoring and control of a system. Timestamping further allows customized data collection techniques, where a DSL line can be measured or monitored at intervals whose frequency depends on the line's stability. Moreover, data parameter read and control parameter write operations are presented in conjunction with the use of timestamping. Also, control and operation of a DSL system is enhanced by implementing bit-loading that minimizes, eliminates or otherwise mitigates the amount by which the SNR margin per tone exceeds a maximum SNR margin quantity, where such bit-loading can be selected through an appropriate interface.
摘要:
Methods, techniques, computer program products, apparatus, devices, etc., used in connection with DSL Management Interfaces, significantly improve the management capabilities of a DSL network and/or improve testing relating to DSL equipment and services by permitting better control and operation of a DSL system, including implementation of timestamping for more accurate measurement, monitoring and control of a system. Timestamping further allows customized data collection techniques, where a DSL line can be measured or monitored at intervals whose frequency depends on the line's stability. Moreover, data parameter read and control parameter write operations are presented in conjunction with the use of timestamping. Also, control and operation of a DSL system is enhanced by implementing bit-loading that minimizes, eliminates or otherwise mitigates the amount by which the SNR margin per tone exceeds a maximum SNR margin quantity, where such bit-loading can be selected through an appropriate interface.
摘要:
Data indicative of a level of stability of a DSL link is received. Based on the received data, it is determined whether the data indicates a level of stability of the DSL link that is above or below and minimum threshold. If the level of stability of the DSL link is below the minimum threshold, die noise associated with the DSL link before the time of failure is compared with the noise of failure. If the difference between the noise before and after the time of failure exceeds a threshold, then the difference in noise is characterized as a stationary noise associated with the DSL link. However, if the difference between the noise before and after the time of failure is below the threshold, a determination is made whether the failure is associated with a loss of power to the DSL link or a severe impulse noise event the difference in noise is characterized accordingly. Finally, the characterization of the noise associated with the DSL link is preserved for subsequent possible reconfiguration of the DSL link to improve link stability.
摘要:
Data indicative of a level of stability of a DSL link is received. Based on the received data, it is determined whether the data indicates a level of stability of the DSL link that is above or below a minimum threshold. If the level of stability of the DSL link is below the minimum threshold, die noise associated with the DSL link before the time of failure is compared with the noise associated with the DSL link after the time of failure. If the difference between the noise before and after the time of failure exceeds a threshold, then the difference in noise is characterized as a stationary noise associated with the DSL link. However, if the difference between the noise before and after the time of failure is below the threshold, a determination is made whether the failure is associated with a loss of power to the DSL link or a severe impulse noise event—the difference in noise is characterized accordingly. Finally, the characterization of the noise associated with the DSL link is preserved for subsequent possible reconfiguration of the DSL link to improve link stability.
摘要:
Data indicative of a level of stability of a DSL link is received. Based on the received data, it is determined whether the data indicates a level of stability of the DSL link that is above or below a minimum threshold. If the level of stability of the DSL link is below the minimum threshold, die noise associated with the DSL link before the time of failure is compared with the noise associated with the DSL link after the time of failure. If the difference between the noise before and after the time of failure exceeds a threshold, then the difference in noise is characterized as a stationary noise associated with the DSL link. However, if the difference between the noise before and after the time of failure is below the threshold, a determination is made whether the failure is associated with a loss of power to the DSL link or a severe impulse noise event—the difference in noise is characterized accordingly. Finally, the characterization of the noise associated with the DSL link is preserved for subsequent possible reconfiguration of the DSL link to improve link stability.
摘要:
Methods, apparatus and computer program products allow a user of DSL or the like to implement user preferences to the extent feasible in light of operational limits and conditions. In some embodiments, an operational profile is imposed on the user. User preference data is evaluated to determine the extent to which one or more user preferences can be implemented in light of the operational profile. One or more controllers can assist in collecting user preference data, evaluating the user preference data, operational data and other data and information, and implementing user preferences as feasible. Evaluation of the user preference data and operational profile and/or data can include considering the compatibility of the user's preferences and the operational profile and/or data. Controllers assisting users can include a local controller at the user's location, one or more upstream-end local controllers, one or more remote location controllers, and/or one or more other downstream-end device controllers at locations other than the user's location. Data and information can be shared among the various controllers, either using the DSL system itself or using a proprietary or other alternative data system.
摘要:
Existing and future standardized VDSL2 and other systems can be integrated into and used with a vectored DSLAM or other vectored or non-vectored DSL system, without a new user disrupting service to other users in the same or a nearby binder, in some cases by using transmit power, CARMASK and/or PSDMASK DSL capabilities to reduce both downstream and upstream training-signal levels so that training of a new DSL line is non-disruptive, despite a lack of knowledge of the pre-existing binder. For vectored systems, the crosstalk from that tone can be observed, learned and then added to the vectoring system so that any subsequent excitation on that tone would be eliminated by vector processing. A second tone then can be added in the same way, etc. In non-vectored DSLs that might be operating in a binder or line set, once these non-vectored lines are observed to be present, a vectored line set controller, such as a DSL optimizer, then can anticipate the potential interference from such non-vectored lines.
摘要:
Estimates of a communication system configuration, such as a DSL system, are based on operational data collected from a network element management system, protocol and users. The operational data collected from the system can include performance-characterizing operational data that typically is available in the OSL system via element-management-system protocols. Generated estimates and/or approximations can be used in evaluating system performance and directly or indirectly dictating/requiring changes or recommending improvements in operation by transmitters and/or other parts of the indication system. Data and/or other information may be collected using internal means or using system elements and components via e-mail and/or other extra means. The likelihood of the models accuracy can be based on various data, information and/or indicators of system performance, such as observed normal operational data, test data and/or prompted operational data that shows operating performance based on stimulation signals.