摘要:
The described systems and methods are directed at interactively rendering graphics using precomputed radiance transfer (PRT). A reflectance matrix that represents the reflectance of a particular object to be rendered is determined. Source lighting associated with the object is represented using basis functions. The reflectance matrix is factored into view and light components. A raw transfer matrix is determined based, in part, from the factored reflectance matrix and the source lighting. The raw transfer matrix is partitioned to obtain transfer matrices, which are used to render the object. The described systems and methods are capable of rendering glossy objects with well-defined shadows.
摘要:
Large mesh deformation using the volumetric graph Laplacian is described. In one aspect, information is received from a user, wherein the information indicates how an original mesh is to be deformed. The original mesh is then deformed based on the information and application of a volumetric differential operator to a volumetric graph generated from the original mesh.
摘要:
The described systems and methods are directed at interactively rendering graphics using precomputed radiance transfer (PRT). A reflectance matrix that represents the reflectance of a particular object to be rendered is determined. Source lighting associated with the object is represented using basis functions. The reflectance matrix is factored into view and light components. A raw transfer matrix is determined based, in part, from the factored reflectance matrix and the source lighting. The raw transfer matrix is partitioned to obtain transfer matrices, which are used to render the object. The described systems and methods are capable of rendering glossy objects with well-defined shadows.
摘要:
Large mesh deformation using the volumetric graph Laplacian is described. In one aspect, information is received from a user, wherein the information indicates how an original mesh is to be deformed. The original mesh is then deformed based on the information and application of a volumetric differential operator to a volumetric graph generated from the original mesh.
摘要:
A computer implemented method for deforming a 3D polygon mesh using non-linear and linear constraints. The method includes creating a coarse control 3D polygon mesh that completely encapsulates the 3D polygon mesh to be deformed, projecting the deformation energy of the 3D polygon mesh and the constraints of the 3D polygon mesh to the vertices, or subspace, of the coarse control 3D polygon mesh, and determining the resulting deformed 3D polygon mesh by iteratively determining the deformation energy of the subspace. The constraints may be either linear or non-linear constraints, for example, a Laplacian constraint, a position constraint, a projection constraint, a skeleton constraint, or a volume constraint.
摘要:
A system and process for determining the similarity in the shape of objects is presented that generates a novel shape representation called a directional histogram model. This shape representative captures the shape variations of an object with viewing direction, using thickness histograms. The resulting directional histogram model is substantially invariant to scaling and translation. A matrix descriptor can also be derived by applying the spherical harmonic transform to the directional histogram model. The resulting matrix descriptor is substantially invariant to not only scaling and translation, but rotation as well. The matrix descriptor is also robust with respect to local modification or noise, and able to readily distinguish objects with different global shapes. The typical applications of the directional histogram model and matrix descriptor include recognizing 3D solid shapes, measuring the similarity between different objects and shape similarity based object retrieval.
摘要:
A computer implemented method for deforming a 3D polygon mesh using non-linear and linear constraints. The method includes creating a coarse control 3D polygon mesh that completely encapsulates the 3D polygon mesh to be deformed, projecting the deformation energy of the 3D polygon mesh and the constraints of the 3D polygon mesh to the vertices, or subspace, of the coarse control 3D polygon mesh, and determining the resulting deformed 3D polygon mesh by iteratively determining the deformation energy of the subspace. The constraints may be either linear or non-linear constraints, for example, a Laplacian constraint, a position constraint, a projection constraint, a skeleton constraint, or a volume constraint.
摘要:
Computer graphics image rendering techniques render images modeling transfer at two scales. A macro-scale is coarsely sampled over an object's surface, providing global effects like shadows and interreflections cast from an arm onto a body. A meso-scale is finely sampled over a small patch to provide local texture. Low-order spherical harmonics represent low-frequency lighting dependence for both scales. To render, a coefficient vector representing distant source lighting is first transformed at the macro-scale by a matrix at each vertex of a coarse mesh, resulting in vectors representing a spatially-varying hemisphere of lighting incident to the meso-scale. A radiance transfer texture specifies the meso-scale response to each lighting basis component, and a function of a spatial index and a view direction. A dot product of the macro-scale result vector with the vector looked up from the radiance transfer texture performs the correct shading integral. An id map places radiance transfer texture samples from a small patch over the object's surface, so that only two scalars are specified at high spatial resolution.
摘要:
A real-time algorithm for rendering an inhomogeneous scattering medium such as fog is described. An input media animation is represented as a sequence of density fields, each of which is decomposed into a weighted sum of a set of radial basis functions (RBFs) such as Gaussians. The algorithm computes airlight and surface reflectance of the inhomogeneous scattering medium. Several approximations are taken which lead to analytical solutions of quantities such as an optical depth integrations and single scattering integrations, and a reduced number of integrations that need to be calculated. The resultant algorithm is able to render inhomogeneous media including their shadowing and scattering effects in real time. The algorithm may be adopted for a variety of light sources including point lights and environmental lights.
摘要:
A real-time algorithm for rendering an inhomogeneous scattering medium such as fog is described. An input media animation is represented as a sequence of density fields, each of which is decomposed into a weighted sum of a set of radial basis functions (RBFs) such as Gaussians. The algorithm computes airlight and surface reflectance of the inhomogeneous scattering medium. Several approximations are taken which lead to analytical solutions of quantities such as an optical depth integrations and single scattering integrations, and a reduced number of integrations that need to be calculated. The resultant algorithm is able to render inhomogeneous media including their shadowing and scattering effects in real time. The algorithm may be adopted for a variety of light sources including point lights and environmental lights.