Abstract:
A nuclear reactor plant including a reactor; a coolant in the reactor; a gas system connected to the reactor and adapted to provide a gas supply to and gas removal from a space above the coolant; and a device for injection of gas into the coolant. The device is installed partially in the coolant and partially in the space above the coolant, and is adapted to supply gas from the space above the coolant to the coolant. The gas system and device are configured to carry out steps including: supplying gas to be injected into the coolant from the gas system to the space above the coolant space; injecting gas into the coolant by maintaining the gas pressure higher than coolant pressure in the device; and injecting gas into the gas system from the space above the coolant.
Abstract:
The invention relates to the field of nuclear technology, and specifically to a method for the in situ passivation of steel surfaces. The method consists in installing, in a position intended for a regular core, a core simulator in the form of a model of the core, which models the shape thereof, the relative position of the core components, and also the mass characteristics thereof; next, the reactor is filled with a heavy liquid metal heat transfer medium, the heat transfer medium is heated to a temperature which provides for the conditions of passivation, and in situ passivation is carried out in two stages, the first of which includes an isothermal passivation mode in conformity with the conditions determined for this stage, and the second mode includes non-isothermal passivation, which is carried out under different conditions, after which the core simulator is removed and the regular core is installed in the place thereof. The method provides for the corrosion-resistance of steel elements in a heavy liquid metal heat transfer medium environment and permits a decrease in the maximum rate of oxygen consumption during the initial period of operation of a nuclear actor.
Abstract:
A method for the inner-contour passivation of steel surfaces of a nuclear reactor consists in filling a first contour of a nuclear reactor with a liquid metal coolant, introducing a reagent into the liquid metal coolant, said reagent interacting with the material of elements of the first contour, forming a protective film, and heating the liquid metal coolant, having the reagent introduced therein, to a temperature allowing for conditions for forming the protective film. The liquid metal coolant having the reagent introduced therein is kept at said temperature until a continuous protective film is formed on the surface of the material of the elements of the first contour. The liquid metal coolant having reagent introduced therein is heated by means of the friction thereof against rotating vanes of a vane pump, which is submerged in the liquid metal coolant. The present invention thus provides for a simpler passivation process, a more reliable passivation mode, an increase in the safety thereof and a simpler control over the process of passivation of steel surfaces.
Abstract:
A method for the inner-contour passivation of steel surfaces of a nuclear reactor consists in filling a first contour of a nuclear reactor with a liquid metal coolant, introducing a reagent into the liquid metal coolant, said reagent interacting with the material of elements of the first contour, forming a protective film, and heating the liquid metal coolant, having the reagent introduced therein, to a temperature allowing for conditions for forming the protective film. The liquid metal coolant having the reagent introduced therein is kept at said temperature until a continuous protective film is formed on the surface of the material of the elements of the first contour. The liquid metal coolant having reagent introduced therein is heated by means of the friction thereof against rotating vanes of a vane pump, which is submerged in the liquid metal coolant. The present invention thus provides for a simpler passivation process, a more reliable passivation mode, an increase in the safety thereof and a simpler control over the process of passivation of steel surfaces.
Abstract:
The method and system for control of oxygen concentration in the coolant of a reactor plant including a reactor, coolant in the reactor, gas system, mass-exchange apparatus, disperser and an oxygen sensor in the coolant have been disclosed. The method includes the following steps implemented by the system: estimation of the oxygen concentration; comparison of the oxygen concentration with the permissible value; if the oxygen concentration is reduced, comparison of the reduction value and\or rate with the corresponding threshold value; if the reduction value and\or rate of oxygen concentration is below the threshold value, activation of the mass-exchange apparatus; if the reduction value and/or rate of oxygen concentration is above the corresponding threshold value, supply of oxygen-containing gas from the gas system to the near-coolant space and/or activation of the disperser. Technical result: improvement of controllability of oxygen concentration in coolant, enhancement of safety and extension of reactor plant operating life.
Abstract:
The invention relates to nuclear power engineering and can be used in power plants with lead-containing liquid metal coolants, and particularly in fast neutron reactors. The proposed nuclear reactor and the method and system for monitoring the thermodynamic activity of oxygen in a coolant with continuously operational oxygen thermodynamic activity sensors located in the “hot” and “cold” zones of the reactor vessel and an additional intermittently operational sensor make it possible to carry out continuous monitoring in order to maintain set oxygen thermodynamic activity values in a liquid metal coolant under any prescribed operating regime.