摘要:
A process and apparatus for liquefying natural gas includes a heavies recovery system. In another aspect, a liquefied natural gas (LNG) facility may employ an ethylene independent heavies recovery system. The recovery system may thus operate relying only on fluid input from upstream of an ethylene refrigeration cycle. A heavies-depleted stream recovered from a liquid withdrawn from a heavies removal column in the heavies recovery system may combine at a location downstream of the heavies removal column with an overhead withdrawn from the heavies removal column for further cooling of such combined stream into liquefied natural gas product.
摘要:
An LNG facility employing an optimized heavies removal system. The optimized heavies removal system can comprise at least one distillation column and at least two separate heat exchangers. The heat exchangers can be operable to heat a liquid stream withdrawn from a distillation column to thereby provide predominantly vapor and/or liquid streams that can be reintroduced into the column.
摘要:
A liquefied natural gas (LNG) facility that employs a system to remove incondensable material from one or more refrigeration cycles within the facility. One or more embodiments of the present invention can be advantageously employed in an open-loop refrigeration cycle to remove at least a portion of one or more high vapor pressure components that have accumulated in the refrigerant cycle over time. In addition, several embodiments can be advantageously employed to stabilize facility operation in the event of drastic changes to the concentration of the natural gas feed stream introduced into the facility.
摘要:
This invention relates to a system and method for liquefying natural gas. In another aspect, the invention concerns an improved liquefied natural gas facility employing a closed loop methane refrigeration cycle. In another aspect, the invention concerns the utilization of lean boil-off gas.
摘要:
This invention relates to a system and method for liquefying natural gas. In another aspect, the invention concerns an improved liquefied natural gas facility employing a closed loop methane refrigeration cycle. In another aspect, the invention concerns the utilization of lean boil-off gas.
摘要:
A liquefied natural gas (LNG) facility that employs a system to remove incondensable material from one or more refrigeration cycles within the facility. One or more embodiments of the present invention can be advantageously employed in an open-loop refrigeration cycle to remove at least a portion of one or more high vapor pressure components that have accumulated in the refrigerant cycle over time. In addition, several embodiments can be advantageously employed to stabilize facility operation in the event of drastic changes to the concentration of the natural gas feed stream introduced into the facility.
摘要:
An LNG facility employing an optimized heavies removal system. The optimized heavies removal system can comprise at least one distillation column and at least two separate heat exchangers. The heat exchangers can be operable to heat a liquid stream withdrawn from a distillation column to thereby provide predominantly vapor and/or liquid streams that can be reintroduced into the column.
摘要:
Process for efficiently operating a natural gas liquefaction system with integrated heavies removal/natural gas liquids recovery to produce liquefied natural gas (LNG) and/or natural gas liquids (NGL) products.
摘要:
Process for efficiently operating a natural gas liquefaction system with integrated heavies removal/natural gas liquids recovery to produce liquefied natural gas (LNG) and/or natural gas liquids (NGL) products.
摘要:
An LNG facility capable of producing a domestic gas product from an intermediate stream in the LNG facility. Withdrawing the domestic gas product from a location within the LNG facility can minimize operational disturbances typically caused by extracting a domestic gas product stream upstream of the liquefaction portion of the LNG facility. In addition, withdrawing the domestic gas product from this location can provide increased control of light contaminants (e.g., nitrogen) in open-loop refrigeration cycles and can ultimately result in incremental LNG and/or NGL production.