摘要:
In one aspect, a programmer for an implantable medical device comprises a user interface that receives user input corresponding to one or more selected stimulation therapy parameters for delivering stimulation therapy to a patient with the implantable medical device and presents an energy consumption estimate of a power source based on the selected stimulation therapy parameters; and a processor that determines one or more programming options that, if selected, would alter the selected stimulation therapy parameters and reduce the energy consumption estimate. The user interface presents at least one of the programming options to reduce the energy consumption estimate to the user with an indication that user selection of one or more of the presented programming options would alter the selected stimulation therapy parameters to reduce energy consumption of the implantable medical device.
摘要:
In one aspect, a programmer for an implantable medical device comprises a user interface that receives user input corresponding to one or more selected stimulation therapy parameters for delivering stimulation therapy to a patient with the implantable medical device and presents an energy consumption estimate of a power source based on the selected stimulation therapy parameters; and a processor that determines one or more programming options that, if selected, would alter the selected stimulation therapy parameters and reduce the energy consumption estimate. The user interface presents at least one of the programming options to reduce the energy consumption estimate to the user with an indication that user selection of one or more of the presented programming options would alter the selected stimulation therapy parameters to reduce energy consumption of the implantable medical device.
摘要:
Various programming techniques are described for medical devices that deliver electrical stimulation therapy that may include mapping between discrete electrical stimulation parameters and a graphical view of the electrical stimulation representing a stimulation zone generated by the parameters. In one example, a method includes receiving, via a programmer for an electrical stimulator, user input that graphically manipulates at least one of size and a shape of a graphical representation of at least one electrical stimulation zone displayed on the programmer, and defining a program to control delivery of electrical stimulation therapy based on the user input.
摘要:
Various programming techniques are described for medical devices that deliver electrical stimulation therapy that may include mapping between discrete electrical stimulation parameters and a graphical view of the electrical stimulation representing a stimulation zone generated by the parameters. In one example, a method includes receiving, via a programmer for an electrical stimulator, user input that graphically manipulates at least one of size and a shape of a graphical representation of at least one electrical stimulation zone displayed on the programmer, and defining a program to control delivery of electrical stimulation therapy based on the user input.
摘要:
Techniques relate to operating a medical device by classifying a detected posture state of a patient. This classification may be performed by comparing the detected posture state to posture state definitions available within the system. Each definition may be described in terms of a parameter (e.g., vector) indicative of a direction in three-dimensional space. The posture state definitions may be calibrated by automatically estimating values for these parameters, thereby eliminating the need for the patient to assume each posture state during the calibration process to capture actual parameter values. According to another aspect, the estimated parameter values may be updated as the patient assumes various postures during a daily routine. For instance, estimated vectors initially used to calibrate the posture state definitions may be changed over time to more closely represent posture states the patient actually assumes, and to further adapt to changes in a patient's condition.
摘要:
Techniques relate to operating a medical device by classifying a detected posture state of a patient. This classification may be performed by comparing the detected posture state of the patient to posture state definitions available within the system. Each definition may be described in terms of a parameter (e.g., vector) indicative of a direction in three-dimensional space. The posture state definitions may be calibrated by automatically estimating values for these parameters, thereby eliminating the need for the patient to assume each posture state during the calibration process to capture actual parameter values. According to another aspect, the estimated parameter values may be updated as the patient assumes various postures during a daily routine. For instance, estimated vectors initially used to calibrate the posture state definitions may be changed over time to more closely represent posture states the patient actually assumes, and to further adapt to changes in a patient's condition.
摘要:
Techniques relate to operating a medical device by classifying a detected posture state of a patient. This classification may be performed by comparing the detected posture state of the patient to posture state definitions available within the system. Each definition may be described in terms of a parameter (e.g., vector) indicative of a direction in three-dimensional space. The posture state definitions may be calibrated by automatically estimating values for these parameters, thereby eliminating the need for the patient to assume each posture state during the calibration process to capture actual parameter values. According to another aspect, the estimated parameter values may be updated as the patient assumes various postures during a daily routine. For instance, estimated vectors initially used to calibrate the posture state definitions may be changed over time to more closely represent posture states the patient actually assumes, and to further adapt to changes in a patient's condition.
摘要:
Techniques relate to operating a medical device by classifying a detected posture state of a patient. This classification may be performed by comparing the detected posture state of the patient to posture state definitions available within the system. Each definition may be described in terms of a parameter (e.g., vector) indicative of a direction in three-dimensional space. The posture state definitions may be calibrated by automatically estimating values for these parameters, thereby eliminating the need for the patient to assume each posture state during the calibration process to capture actual parameter values. According to another aspect, the estimated parameter values may be updated as the patient assumes various postures during a daily routine. For instance, estimated vectors initially used to calibrate the posture state definitions may be changed over time to more closely represent posture states the patient actually assumes, and to further adapt to changes in a patient's condition.
摘要:
The disclosure provides techniques for parameter-directed shifting of electrical stimulation electrode combinations. An external programmer permits a user to shift electrode combinations, e.g., along the length of a lead or leads. The external programmer accepts shift input and causes an electrical stimulator to shift electrode combinations as indicated by the input. Different sets of electrodes may have different electrode counts. For example, an array of electrodes carried by one lead may have a greater number of electrodes than an array of electrodes carried on another lead. The disclosure provides techniques for shifting electrode combinations among leads with different electrode counts. For example, an external programmer may execute shifts in a series of shift operations, where the number of shift operations along the length of a lead having a greater electrode count is greater than the number of shift steps along the length of a lead having a lesser electrode count.
摘要:
The disclosure provides techniques for parameter-directed shifting of electrical stimulation electrode combinations. An external programmer permits a user to shift electrode combinations, e.g., along the length of a lead or leads. The external programmer accepts shift input and causes an electrical stimulator to shift electrode combinations as indicated by the input. Different sets of electrodes may have different electrode counts. For example, an array of electrodes carried by one lead may have a greater number of electrodes than an array of electrodes carried on another lead. The disclosure provides techniques for shifting electrode combinations among leads with different electrode counts. For example, an external programmer may execute shifts in a series of shift operations, where the number of shift operations along the length of a lead having a greater electrode count is greater than the number of shift steps along the length of a lead having a lesser electrode count.