摘要:
An ultrasound imaging system (300) includes a transducer array (302) with a two-dimensional array of transducer elements configured to transmit an ultrasound signal and receive echoes, transmit circuitry (304) configured to control the transducer array to transmit the ultrasound signal so as to traverse a field of view, and receive circuitry (306) configured to receive a two dimensional set of echoes produced in response to the ultrasound signal traversing structure in the field of view, wherein the structure includes flowing structure. A beamformer (312) configured to beamform the echoes, and a velocity processor (314) configured to separately determine a depth velocity component, a transverse velocity component and an elevation velocity component, wherein the velocity components are determined based on the same transmitted ultrasound signal and the same received set of two dimensional echoes.
摘要:
An ultrasound imaging system (300) includes a transducer array (302) with a two-dimensional array of transducer elements configured to transmit an ultrasound signal and receive echoes, transmit circuitry (304) configured to control the transducer array to transmit the ultrasound signal so as to traverse a field of view, and receive circuitry (306) configured to receive a two dimensional set of echoes produced in response to the ultrasound signal traversing structure in the field of view, wherein the structure includes flowing structure. A beamformer (312) configured to beamform the echoes, and a velocity processor (314) configured to separately determine a depth velocity component, a transverse velocity component and an elevation velocity component, wherein the velocity components are determined based on the same transmitted ultrasound signal and the same received set of two dimensional echoes.
摘要:
A method includes generating an ultrasound image based on the harmonic components in the received echoes using multi-stage beamforming and data generated therefrom. An ultrasound imaging system (100, 200) includes a transducer array (108) including a plurality of transducer elements configured to emit ultrasound signals and receive echoes generated in response to the emitted ultrasound signals. The ultrasound imaging system further includes transmit circuitry (110) that generates a set of pulses that actuate a set of the plurality of transducer elements to emit ultrasound signals. The ultrasound imaging system further includes receive circuitry (112), including a first beamformer (122) configured to process the received echoes, generating intermediate scan lines. Memory (126) stores the generated intermediate scan lines. The ultrasound imaging system further includes a synthetic aperture processor (128), including a second beamformer (130) configured to process the stored intermediate scan lines, based on a synthetic aperture algorithm, generating a focused image.
摘要:
The invention relates to an apparatus for flow estimation using synthetic aperture imaging. The method uses a Synthetic Transmit Aperture, but unlike previous approaches a new frame is created after every pulse emission. In receive mode parallel beam forming is implemented. The beam formed RF data is added to the previously created RF lines obtained by the same transmit sequence. The apparatus comprises a pulser (1) to generate a pulsed voltage signal, that is fed to the emit beam former (2). The emit beam former (2) is connected to the emitting transducer array (3). The ultrasound is reflected by the object (4) and received by the elements of the transducer array (5). All of these signals are then combined in the beam processor (6) to focus all of the beams in the image in both transmit and receive mode and the simultaneously focused signals are used for updating the image in the processor (7). The estimation processor (8) to correlate the individual measurements to obtain the displacement between high-resolution images and thereby determine the velocity.