摘要:
A nuclear reactor installation includes a reactor pressure vessel and a reactor core in the reactor pressure vessel. A supporting and protective structure supporting the reactor pressure vessel and surrounding the reactor pressure vessel on the bottom and laterally, has a bottom region and a circumferential wall. A core catcher device for the reactor core has a collecting basin for a core melt being installed below the reactor pressure vessel. The collecting basin has a bottom wall and a jacket wall being respectively separated from the bottom region and the circumferential wall of the supporting and protective structure by a spacing gap. Cooling channels are disposed in the spacing gap at the bottom wall and the jacket wall for exterior cooling of the collecting basin with a cooling liquid. Turbulence bodies are disposed in a surface region of the bottom wall for generating a turbulent flow of the cooling liquid flowing from the inside to the outside over the bottom wall toward the jacket wall. There is also a method for starting and maintaining exterior cooling of a core catcher device of a nuclear reactor installation.
摘要:
A device for collecting and cooling reactor-meltdown products from a reactor pressure vessel includes an antechamber disposed below the reactor pressure vessel and an expansion chamber for the reactor-meltdown products. A channel which is disposed between the antechamber and the expansion chamber has a partition being destructible by the reactor-meltdown products. A closure element which connects a coolant reservoir to the expansion chamber is destructible by the reactor-meltdown products. A method for collecting and cooling reactor-meltdown products from a reactor pressure vessel includes collecting reactor-meltdown products in an antechamber disposed below the reactor pressure vessel and keeping them in the antechamber for a predetermined time interval. A partition disposed between the antechamber and an expansion chamber is destroyed with the reactor-meltdown products. The reactor-meltdown products penetrate from the antechamber into the expansion chamber and are spread in the expansion chamber. A closure element is destroyed with the reactor-meltdown products in the expansion chamber, for connecting a coolant reservoir to the expansion chamber and permitting coolant to flow into the expansion chamber where it cools the reactor-meltdown products.
摘要:
A device for collecting core melt from a reactor pressure vessel improves a flow of the core melt out of the reactor pressure vessel. A prechamber is disposed below the reactor pressure vessel and a spreading chamber for the core melt is disposed laterally next to the reactor pressure vessel. The spreading chamber is connected to the prechamber through a channel. A base unit forms a bottom region at least of the prechamber and is made of a material having high thermal conductivity.
摘要:
A nuclear reactor includes a propagation space for core melt. The propagation space has a coolant conduit leading to a coolant reservoir and a device which opens in a temperature-dependent manner. The coolant conduit in the propagation space is a spray conduit having a spraying area which covers the cross-section of the propagation space over a large area. The device is controlled in such a way that it opens when the core melt enters the propagation space. Spraying gives rise to a crust on the core melt which reduces heat radiation. At the same time, the propagation space fills with a steam atmosphere which drastically reduces the thermal load on building structures.