摘要:
A substantially flat fiber optic drop cable assembly comprises: a fiber optic connector comprising a fiber optic ferrule and a housing; a crimp body coupled to the housing of the fiber optic connector; a fiber optic cable comprising a pair of strength members disposed partially within the fiber optic cable; a first sheath disposed between the fiber optic connector and the fiber optic cable, the first sheath coupled to the crimp body; a second sheath disposed between the fiber optic connector and the fiber optic cable, the second sheath coupled to the fiber optic cable; and a demarcation element joining the first sheath and the second sheath, wherein the demarcation element comprises a substantially tubular element; wherein the pair of strength members are configured to engage the crimp body about the first sheath, the second sheath, and the demarcation element.
摘要:
Fiber optic distribution cables and methods for manufacturing the same are disclosed. The methods present one or more optical fibers outward of the protective covering for distribution of the same toward the subscriber. Specifically, the methods include presenting a length of distribution optical fiber outward of the protective covering that is longer than the opening at access location. After the opening is made in the protective covering at the access location, the optical fibers for distribution are selected. Then a tool according to the present invention is positioned about the optical fibers selected for distribution and slid within the protective covering of the fiber optic distribution cable until it reaches a cutting location within the fiber optic distribution cable. Consequently, the tool is positioned for cutting the distribution optical fiber at a cutting location within the fiber optic distribution cable at a downstream location. Thereafter, the tool is removed and the cut distribution optical fiber is routed through the opening at the access location so the distribution optical fiber is presented outside the protective covering.
摘要:
A cable assembly including a fiber optic cable and at least one network access point positioned on the cable at which at least one optical fiber within the cable is accessed and preterminated. The cable assembly comprises a tether adapted to be selectively extended and including at least one tether optical fiber therein that is optically connected to the at least one optical fiber that is preterminated, and a tether storage member for storing at least a portion of the tether therein, wherein at least one of the at least one optical fiber that is preterminated and the at least one tether optical fiber comprises a bend performance optical fiber.
摘要:
Fiber optic distribution cables and methods for manufacturing the same are disclosed. The methods present one or more optical fibers outward of the protective covering for distribution of the same toward the subscriber. Specifically, the methods include presenting a length of distribution optical fiber outward of the protective covering that is longer than the opening at access location. After the opening is made in the protective covering at the access location, the optical fibers for distribution are selected. Then a tool according to the present invention is positioned about the optical fibers selected for distribution and slid within the protective covering of the fiber optic distribution cable until it reaches a cutting location within the fiber optic distribution cable. Consequently, the tool is positioned for cutting the distribution optical fiber at a cutting location within the fiber optic distribution cable at a downstream location. Thereafter, the tool is removed and the cut distribution optical fiber is routed through the opening at the access location so the distribution optical fiber is presented outside the protective covering.
摘要:
Fiber optic distribution cables and methods for manufacturing the same are disclosed. The methods present one or more optical fibers outward of the protective covering for distribution of the same toward the subscriber. Specifically, the methods include presenting a length of distribution optical fiber outward of the protective covering that is longer than the opening at access location. After the opening is made in the protective covering at the access location, the optical fibers for distribution are selected. Then a tool according to the present invention is positioned about the optical fibers selected for distribution and slid within the protective covering of the fiber optic distribution cable until it reaches a cutting location within the fiber optic distribution cable. Consequently, the tool is positioned for cutting the distribution optical fiber at a cutting location within the fiber optic distribution cable at a downstream location. Thereafter, the tool is removed and the cut distribution optical fiber is routed through the opening at the access location so the distribution optical fiber is presented outside the protective covering.
摘要:
A cable assembly comprising a fiber optic cable and one or more attachment points to allow one or more tethers to optically connect to optical fibers within the cable. The cable assembly may be used as a drop cable for extending optical connections to a plurality of points. An attachment structure is provided for maintaining the tether to the cable to prevent damage to the tether. The attachment structure provides a loose attachment to allow the tether to move relative to the distribution cable, so the tether can move in a generally translational movement, is able to slightly twist, and to have limited lateral movement during coiling, installation, and removal of the cable assembly. This loose attachment structure may prevent damage to the tether due to forces being placed on the cable, such as during coiling or uncoiling of the cable. In one exemplary embodiment, the attachment structure is attached to the cable and receives the tether. In another exemplary embodiment, the attachment structure include a protective covering. In another embodiment, both are employed in combination.
摘要:
A cable assembly comprising a fiber optic cable having an optical ribbon stack therein, at least one network access location for accessing the ribbon stack, and at least one ERL insert assembly, which can include for example at least one resilient plug for holding one or more optical ribbons of the fiber optic cable at, or near, the network access location to inhibit optical ribbon stack movement and torque, for example, translation and/or rotation at the network access point. Also disclosed is a method for inhibiting optical fiber movement or torque, translation and/or rotation at a predetermined position within a fiber optic cable.
摘要:
Fiber optic distribution cables and methods for manufacturing the same are disclosed. The fiber optic distribution cables present one or more optical fibers outward of the protective covering for distribution of the same toward the subscriber. In one fiber optic distribution cable, a length of distribution optical fiber that is removed from the distribution cable and presented outward of the protective covering is longer than the opening at access location. In another embodiment, a demarcation point is provided for inhibiting the movement (i.e., pistoning) of the distribution optical fiber into and out of the distribution cable. In still another embodiment, an indexing tube is provided for indexing a tether tube within the indexing tube for providing the distribution optical fiber with a suitable excess fiber length. Additionally, other embodiments may include a fiber optic distribution cable having a dry construction and/or a non-round cross-section.
摘要:
Fiber optic distribution cables and methods for manufacturing the same are disclosed. The methods present one or more optical fibers outward of the protective covering for distribution of the same toward the subscriber. In one method of making the fiber optic distribution cables, an indexing tube is provided for indexing a tether tube within the indexing tube for providing the distribution optical fiber with a suitable excess fiber length. In another method, a demarcation point is provided for inhibiting the movement (i.e., pistoning) of the distribution optical fiber into and out of the distribution cable. In still another method, one or more caps are provided for closing one or more the openings in the protective covering used for accessing the optical fibers within the fiber optic distribution cable. Additionally, other methods may include providing a fiber optic distribution cable having a dry construction and/or a non-round cross-section.
摘要:
A cable assembly comprising a fiber optic cable and one or more attachment points to allow one or more tethers to optically connect to optical fibers within the cable. The cable assembly may be used as a drop cable for extending optical connections to a plurality of points. An attachment structure is provided for maintaining the tether to the cable to prevent damage to the tether. The attachment structure provides a loose attachment to allow the tether to move relative to the distribution cable, so the tether can move in a generally translational movement, is able to slightly twist, and to have limited lateral movement during coiling, installation, and removal of the cable assembly. This loose attachment structure may prevent damage to the tether due to forces being placed on the cable, such as during coiling or uncoiling of the cable. In one exemplary embodiment, the attachment structure is attached to the cable and receives the tether. In another exemplary embodiment, the attachment structure include a protective covering. In another embodiment, both are employed in combination.