摘要:
An electron emission light-emitting device includes a cathode structure, an anode structure, a fluorescent layer, and a low-pressure gas layer. The fluorescent layer is located between the cathode structure and the anode structure. The low-pressure gas layer is filled between the cathode structure and the anode structure, having a function of inducing the cathode to emit electron uniformly. The low-pressure gas layer has an electron mean free path, allowing at least sufficient amount of electrons to directly impinge the fluorescent layer under an operation voltage.
摘要:
An apparatus of light source includes a cathode structure, an anode structure, a fluorescent layer, and a low-pressure gas layer. The fluorescent layer is located between the cathode structure and the anode structure. The low-pressure gas layer is filled between the cathode structure and the anode structure, and has the function of electric conduction. The low-pressure gas layer has an electron mean free path, allowing most of electrons to directly impact the fluorescent layer under an operation voltage.
摘要:
A field emission device has pixels with cathode and anode provided on the same plane, so that electrons directly penetrate an independently provided fluorescent powder layer to produce light, giving the display the advantages of easy focusing, no dark spots, high brightness, and enhanced light emitting performance. Since the light produced by the fluorescent powder layer is not blocked by the anode, the problem of charge accumulation on the fluorescent powder layer is avoided, and it is not necessary to use expensive light-transmittable conducting glass as the anode. With the cathode and the anode located at the same plane, it is not necessary to use a high precision spacer to maintain a fixed distance between the cathode and the anode, enabling the device to be manufactured at reduced cost and high good yield.
摘要:
A light source apparatus applicable to a backlight module includes a cathode structure, an anode structure, a fluorescent layer, a secondary electron generation layer, and a low-pressure gas layer. The fluorescent layer is located between the cathode structure and the anode structure. The low-pressure gas layer is filled between the cathode structure and the anode structure. The secondary electron generation layer is disposed on the cathode structure and can generate additional secondary electrons to hit the fluorescent layer for improving the luminous efficiency.
摘要:
An apparatus of light source includes a cathode structure, an anode structure, a fluorescent layer, and a low-pressure gas layer. The fluorescent layer is located between the cathode structure and the anode structure. The low-pressure gas layer is filled between the cathode structure and the anode structure, and has the function of electric conduction. The low-pressure gas layer has an electron mean free path, allowing most of electrons to directly impact the fluorescent layer under an operation voltage.
摘要:
A light source for projection system is installed on a projector and employs the field emission property between a cathode and an anode to stimulate a fluorescent powder layer for the same to emit light. The projection light source has sufficient brightness without the problems of producing high amount of heat and short service life. The high brightness of the light source enhances the quality of images projected by the projector and largely increases the economic effects of the projector.
摘要:
An apparatus of light source includes a cathode structure, an anode structure, a fluorescent layer, a secondary electron generating layer, and a low-pressure gas layer. The fluorescent layer is located between the cathode structure and the anode structure. The low-pressure gas layer is filled between the cathode structure and the anode structure. The secondary electron generating layer is located on the cathode structure. The secondary electron generating layer can generate additional secondary electrons to hit the fluorescent layer for improving the performance of the light source.
摘要:
A pixel structure of display apparatus includes a first substrate and a second substrate. Several cathode structure layers are disposed on the first substrate. The second substrate is a light-transmissive material. Several anode structure layers are disposed on the second substrate, and are light-transmissive conductive materials. The first substrate faces to the second substrate, so that the cathode structure layers are respectively aligned with the anode structure layers. A separation structure is disposed between the first substrate and the second substrate, for respective partitioning the anode structure layers and the cathode structure layers to form several spaces. Several fluorescent layers are respectively disposed between the anode structure layers and the cathode structure layers. A low-pressure gas is respectively filled into the spaces. The low-pressure gas has an electron mean free path, allowing at least sufficient amount of electrons to directly impinge the fluorescent layer under an operation voltage.
摘要:
A discharge field emission device including a cathode an anode, a conductive gas, and a phosphor is provided. The conductive gas is disposed between the cathode and the anode for inducing electrons from the cathode, wherein the conductive gas has a gas pressure between 10−1 torr and 10−3 torr. In addition, the phosphor is disposed on the moving path of the electrons to react with the electrons and emit light. The discharge field emission device has the advantages of high luminescence efficiency and low cost. A light source apparatus and a display apparatus applying the discharge field emission device are also provided.
摘要:
A field emission backlight module has a field emission structure with cathode and anode provided on the same plane, so that electrons directly penetrate an independently provided fluorescent powder layer to produce light. The light is emitted uniformly without the need of the conventional optical membrane. Since the light produced by the fluorescent powder layer is not blocked by the anode, the problem of charge accumulation on the fluorescent powder layer is avoided, and it is not necessary to use expensive light-transmittable conducting glass as the anode. With the cathode and the anode located at the same plane, it is not necessary to use a precision spacer to adjust the distance between the cathode and the anode, enabling the module to be manufactured at reduced cost and high good yield. When the color sequential displaying method is adopted, expensive color filters required in the conventional LCD may be omitted.