Abstract:
An ultraviolet light emitting device comprises: a first substrate having a main surface; a second substrate facing the main surface of the first substrate; a gas in a space between the first substrate and the second substrate; electrodes directly or indirectly on the main surface of the first substrate; a dielectric layer that is located directly or indirectly on the main surface of the first substrate and covers the electrodes; and a first light-emitting layer. The first light-emitting layer is located directly or indirectly on the dielectric layer and emits ultraviolet light in the gas due to electrical discharge between the electrodes. The first light-emitting layer is thicker in first regions on the dielectric layer than in second regions. The second regions include at least part of regions directly above the electrodes.
Abstract:
Disclosed are devices and methods related to gas discharge tubes (GDTs). In some embodiments, a plurality of GDTs can be fabricated from an insulator plate having a first side and a second side, with the insulator plate defining a plurality of openings. Each opening can be dimensioned to be capable of being covered by first and second electrodes on the first and second sides of the insulator plate to thereby define an enclosed gas volume configured for a GDT operation.
Abstract:
A lamp including a first and second lamp substrate with a first and second external electrode, respectively, and a first and second internal phosphor coating, respectively, wherein the first phosphor coating is a phosphor monolayer. A method of manufacturing a lamp, including screen-printing a phosphor monolayer on a first lamp substrate; screen-printing a phosphor layer on a second lamp substrate; joining the phosphor-coated faces of the first and second lamp substrates together with a seal; and joining a first and second electrode to the uncoupled exterior faces of the first and second lamp substrates, respectively.
Abstract:
The present invention relates to a field emission planar lighting lamp, which comprises: a base substrate; cathodes disposed on the base substrate; anodes disposed on the base substrate, wherein the cathodes are disposed beside the anodes, each anode has an impacted surface corresponding to the cathodes, and the impacted surface is an inclined plane or a curved plane; a phosphor layer disposed on the impacted surface of the anode; and a front substrate corresponding to the base substrate, wherein the anodes and the cathodes are disposed between the base substrate and the front substrate.
Abstract:
Embodiments of the invention provide for large arrays of microcavity plasma devices that can be made inexpensively, and can produce large area but thin displays or lighting sources Interwoven metal wire mesh, such as interwoven Al mesh, consists of two sets of wires which are interwoven in such a way that the two wire sets cross each other, typically at πght angles (90 degrees) although other patterns are also available Fabrication is accomplished with a simple and inexpensive wet chemical etching process The wires in each set are spaced from one another such that the finished mesh forms an array of openings that can be, for example, square, rectangular or diamond-shaped The size of the openings or microcavities is a function of the diameter of the wires in the mesh and the spacing between the wires in the mesh used to form the array of microcavity plasma devices.
Abstract:
The present invention relates to a discharge lamp with a floor plate and a roof plate, which is designed for dielectrically impeded discharge, with at least two electrodes of different polarity being allocated to the sections of the discharge space, which is divided by rib-like support elements, with the electrodes located at a distance from the longitudinal support elements.
Abstract:
A system for harvesting solar energy from an electric grid comprising a solar panel including an insulating material and a photovoltaic module attached to the insulating material, said solar panel adapted to be mounted onto a live power line in said electric grid.
Abstract:
A flat or substantially flat luminous structure including two walls having main faces facing one another and defining an internal space, a light source placed in the internal space and a power supply for the light source, and at least one substantially transparent part or an overall transparent part forming at least one light well. The structure is capable of illuminating via at least one luminous region of at least one of the main faces, an element having a reflective surface that reflects visible light, placed facing at least one part of the luminous region. The element is switchable and the reflective surface is capable of becoming a substantially transparent surface or an overall transparent surface over at least one area, and vice versa.
Abstract:
A lighting device comprising a hermetically sealed vessel having a light transmissive property, a gas filled in the hermetically sealed vessel and configured to emit a first light having wavelength when excited by electron, the wavelength of the first light has a range from vacuum ultraviolet to visual light, an electron source disposed within the hermetically sealed vessel, the electron source configured to emit the electron when an operation voltage is applied, anode electrode disposed within the hermetically sealed vessel, a phosphor configured to emit the second light when excited by the first light. The electron source is configured to emit the electron having energy distribution when the electron source receives the emission voltage. The energy distribution having a peak energy. The peak energy is higher than an excitation energy of the gas. The peak energy is lower than an ionization energy of the gas.
Abstract:
A flat lamp comprising a flat discharge vessel, which encloses a discharge volume with two plates (1, 2) which are separated from one another by way of a frame (3), wherein the frame (3) includes a region which is elastically deformable in the direction of the spacing between the plates.